Properties

Modulus $936$
Structure \(C_{2}\times C_{2}\times C_{6}\times C_{12}\)
Order $288$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(936)
 
Copy content pari:g = idealstar(,936,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 288
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{6}\times C_{12}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{936}(703,\cdot)$, $\chi_{936}(469,\cdot)$, $\chi_{936}(209,\cdot)$, $\chi_{936}(145,\cdot)$

First 32 of 288 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{936}(1,\cdot)\) 936.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{936}(5,\cdot)\) 936.em 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\)
\(\chi_{936}(7,\cdot)\) 936.ek 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(11,\cdot)\) 936.dx 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{936}(17,\cdot)\) 936.dh 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(19,\cdot)\) 936.ed 12 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{936}(23,\cdot)\) 936.ce 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{936}(25,\cdot)\) 936.cw 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{936}(29,\cdot)\) 936.bt 6 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{936}(31,\cdot)\) 936.dk 12 no \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(-1\)
\(\chi_{936}(35,\cdot)\) 936.dj 6 no \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(37,\cdot)\) 936.eh 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{936}(41,\cdot)\) 936.dz 12 no \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{936}(43,\cdot)\) 936.cd 6 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{936}(47,\cdot)\) 936.ep 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\)
\(\chi_{936}(49,\cdot)\) 936.ch 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{936}(53,\cdot)\) 936.p 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{936}(55,\cdot)\) 936.di 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{936}(59,\cdot)\) 936.dx 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(61,\cdot)\) 936.db 6 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(67,\cdot)\) 936.el 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{936}(71,\cdot)\) 936.dv 12 no \(-1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{936}(73,\cdot)\) 936.v 4 no \(-1\) \(1\) \(i\) \(-i\) \(-i\) \(-1\) \(i\) \(-1\) \(-1\) \(1\) \(i\) \(1\)
\(\chi_{936}(77,\cdot)\) 936.cv 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{936}(79,\cdot)\) 936.bz 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{936}(83,\cdot)\) 936.eo 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\)
\(\chi_{936}(85,\cdot)\) 936.ei 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{936}(89,\cdot)\) 936.dr 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{936}(95,\cdot)\) 936.bp 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{936}(97,\cdot)\) 936.ea 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{936}(101,\cdot)\) 936.cs 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{936}(103,\cdot)\) 936.cm 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\)
Click here to search among the remaining 256 characters.