Character group
|
| ||
| Order | = | 288 |
|
| ||
| Structure | = | \(C_{2}\times C_{2}\times C_{6}\times C_{12}\) |
|
| ||
| Generators | = | $\chi_{936}(703,\cdot)$, $\chi_{936}(469,\cdot)$, $\chi_{936}(209,\cdot)$, $\chi_{936}(145,\cdot)$ |
First 32 of 288 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{936}(1,\cdot)\) | 936.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{936}(5,\cdot)\) | 936.em | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) |
| \(\chi_{936}(7,\cdot)\) | 936.ek | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(11,\cdot)\) | 936.dx | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{936}(17,\cdot)\) | 936.dh | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(19,\cdot)\) | 936.ed | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{936}(23,\cdot)\) | 936.ce | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{936}(25,\cdot)\) | 936.cw | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
| \(\chi_{936}(29,\cdot)\) | 936.bt | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{936}(31,\cdot)\) | 936.dk | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) |
| \(\chi_{936}(35,\cdot)\) | 936.dj | 6 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(37,\cdot)\) | 936.eh | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{936}(41,\cdot)\) | 936.dz | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{936}(43,\cdot)\) | 936.cd | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{936}(47,\cdot)\) | 936.ep | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) |
| \(\chi_{936}(49,\cdot)\) | 936.ch | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{936}(53,\cdot)\) | 936.p | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{936}(55,\cdot)\) | 936.di | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{936}(59,\cdot)\) | 936.dx | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(61,\cdot)\) | 936.db | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(67,\cdot)\) | 936.el | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{936}(71,\cdot)\) | 936.dv | 12 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{936}(73,\cdot)\) | 936.v | 4 | no | \(-1\) | \(1\) | \(i\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(-1\) | \(1\) | \(i\) | \(1\) |
| \(\chi_{936}(77,\cdot)\) | 936.cv | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
| \(\chi_{936}(79,\cdot)\) | 936.bz | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
| \(\chi_{936}(83,\cdot)\) | 936.eo | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) |
| \(\chi_{936}(85,\cdot)\) | 936.ei | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{936}(89,\cdot)\) | 936.dr | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{936}(95,\cdot)\) | 936.bp | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{936}(97,\cdot)\) | 936.ea | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{936}(101,\cdot)\) | 936.cs | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{936}(103,\cdot)\) | 936.cm | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |