Properties

Label 931.z
Modulus $931$
Conductor $931$
Order $14$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(931, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([3,7])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(132,931)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(931\)
Conductor: \(931\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.1198743339177357901519315593373.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{931}(132,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{931}(265,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{931}(398,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{931}(531,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{931}(664,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\)
\(\chi_{931}(797,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\)