# Properties

 Label 931.113 Modulus $931$ Conductor $931$ Order $14$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(931, base_ring=CyclotomicField(14))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([10,7]))

pari: [g,chi] = znchar(Mod(113,931))

## Basic properties

 Modulus: $$931$$ Conductor: $$931$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$14$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 931.ba

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{7})$$ Fixed field: 14.0.171249048453908271645616513339.1

## Values on generators

$$(248,344)$$ → $$(e\left(\frac{5}{7}\right),-1)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$8$$ $$9$$ $$10$$ $$11$$ $$12$$ $$-1$$ $$1$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{5}{14}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 931 }(113,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 931 }(113,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 931 }(113,·),\chi_{ 931 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 931 }(113,·)) \;$$ at $$\; a,b =$$ e.g. 1,2