Properties

 Label 930.29 Modulus $930$ Conductor $465$ Order $10$ Real no Primitive no Minimal yes Parity even

Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(930, base_ring=CyclotomicField(10))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([5,5,3]))

pari: [g,chi] = znchar(Mod(29,930))

Basic properties

 Modulus: $$930$$ Conductor: $$465$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$10$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{465}(29,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 930.y

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Values on generators

$$(311,187,871)$$ → $$(-1,-1,e\left(\frac{3}{10}\right))$$

Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{5}\right)$$
 value at e.g. 2

Related number fields

 Field of values: $$\Q(\zeta_{5})$$ Fixed field: 10.10.20077588078259540625.1

Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 930 }(29,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{930}(29,\cdot)) = \sum_{r\in \Z/930\Z} \chi_{930}(29,r) e\left(\frac{r}{465}\right) = 0.4941243958+21.5581966101i$$

Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 930 }(29,·),\chi_{ 930 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{930}(29,\cdot),\chi_{930}(1,\cdot)) = \sum_{r\in \Z/930\Z} \chi_{930}(29,r) \chi_{930}(1,1-r) = 0$$

Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 930 }(29,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{930}(29,·)) = \sum_{r \in \Z/930\Z} \chi_{930}(29,r) e\left(\frac{1 r + 2 r^{-1}}{930}\right) = -0.0$$