Properties

Modulus $925$
Structure \(C_{4}\times C_{180}\)
Order $720$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(925)
 
Copy content pari:g = idealstar(,925,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 720
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{4}\times C_{180}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{925}(852,\cdot)$, $\chi_{925}(76,\cdot)$

First 32 of 720 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{925}(1,\cdot)\) 925.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{925}(2,\cdot)\) 925.cd 180 yes \(1\) \(1\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{23}{90}\right)\)
\(\chi_{925}(3,\cdot)\) 925.ch 180 yes \(-1\) \(1\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{107}{180}\right)\)
\(\chi_{925}(4,\cdot)\) 925.cb 90 yes \(1\) \(1\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{925}(6,\cdot)\) 925.bh 20 yes \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{925}(7,\cdot)\) 925.br 36 no \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{925}(8,\cdot)\) 925.bt 60 yes \(1\) \(1\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{925}(9,\cdot)\) 925.bz 90 yes \(1\) \(1\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{17}{90}\right)\)
\(\chi_{925}(11,\cdot)\) 925.bk 30 yes \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{925}(12,\cdot)\) 925.cc 180 yes \(-1\) \(1\) \(e\left(\frac{41}{180}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{149}{180}\right)\) \(e\left(\frac{19}{180}\right)\)
\(\chi_{925}(13,\cdot)\) 925.cd 180 yes \(1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{37}{90}\right)\)
\(\chi_{925}(14,\cdot)\) 925.bx 60 yes \(-1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{47}{60}\right)\)
\(\chi_{925}(16,\cdot)\) 925.bs 45 yes \(1\) \(1\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{925}(17,\cdot)\) 925.cg 180 yes \(1\) \(1\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{925}(18,\cdot)\) 925.bn 36 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(-i\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{925}(19,\cdot)\) 925.cf 180 yes \(-1\) \(1\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{143}{180}\right)\)
\(\chi_{925}(21,\cdot)\) 925.ca 90 yes \(1\) \(1\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{11}{90}\right)\)
\(\chi_{925}(22,\cdot)\) 925.cg 180 yes \(1\) \(1\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{925}(23,\cdot)\) 925.bt 60 yes \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{925}(24,\cdot)\) 925.bo 36 no \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(-i\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{925}(26,\cdot)\) 925.e 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{925}(27,\cdot)\) 925.bw 60 yes \(-1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{47}{60}\right)\)
\(\chi_{925}(28,\cdot)\) 925.ch 180 yes \(-1\) \(1\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{1}{180}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{107}{180}\right)\) \(e\left(\frac{7}{180}\right)\)
\(\chi_{925}(29,\cdot)\) 925.bx 60 yes \(-1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{60}\right)\)
\(\chi_{925}(31,\cdot)\) 925.bh 20 yes \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{925}(32,\cdot)\) 925.bq 36 no \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(-i\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{925}(33,\cdot)\) 925.cc 180 yes \(-1\) \(1\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{89}{180}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{173}{180}\right)\)
\(\chi_{925}(34,\cdot)\) 925.bz 90 yes \(1\) \(1\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{67}{90}\right)\)
\(\chi_{925}(36,\cdot)\) 925.r 10 yes \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{925}(38,\cdot)\) 925.bf 20 no \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(-i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{925}(39,\cdot)\) 925.cf 180 yes \(-1\) \(1\) \(e\left(\frac{59}{180}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{1}{180}\right)\)
\(\chi_{925}(41,\cdot)\) 925.ca 90 yes \(1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{37}{90}\right)\)
Click here to search among the remaining 688 characters.