Character group
|
| ||
| Order | = | 720 |
|
| ||
| Structure | = | \(C_{4}\times C_{180}\) |
|
| ||
| Generators | = | $\chi_{925}(852,\cdot)$, $\chi_{925}(76,\cdot)$ |
First 32 of 720 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{925}(1,\cdot)\) | 925.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{925}(2,\cdot)\) | 925.cd | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{23}{90}\right)\) |
| \(\chi_{925}(3,\cdot)\) | 925.ch | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{107}{180}\right)\) |
| \(\chi_{925}(4,\cdot)\) | 925.cb | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) |
| \(\chi_{925}(6,\cdot)\) | 925.bh | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) |
| \(\chi_{925}(7,\cdot)\) | 925.br | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) |
| \(\chi_{925}(8,\cdot)\) | 925.bt | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{23}{30}\right)\) |
| \(\chi_{925}(9,\cdot)\) | 925.bz | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) |
| \(\chi_{925}(11,\cdot)\) | 925.bk | 30 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) |
| \(\chi_{925}(12,\cdot)\) | 925.cc | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{19}{180}\right)\) |
| \(\chi_{925}(13,\cdot)\) | 925.cd | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) |
| \(\chi_{925}(14,\cdot)\) | 925.bx | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{47}{60}\right)\) |
| \(\chi_{925}(16,\cdot)\) | 925.bs | 45 | yes | \(1\) | \(1\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) |
| \(\chi_{925}(17,\cdot)\) | 925.cg | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{22}{45}\right)\) |
| \(\chi_{925}(18,\cdot)\) | 925.bn | 36 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-i\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) |
| \(\chi_{925}(19,\cdot)\) | 925.cf | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{143}{180}\right)\) |
| \(\chi_{925}(21,\cdot)\) | 925.ca | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{11}{90}\right)\) |
| \(\chi_{925}(22,\cdot)\) | 925.cg | 180 | yes | \(1\) | \(1\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{61}{180}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{28}{45}\right)\) |
| \(\chi_{925}(23,\cdot)\) | 925.bt | 60 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) |
| \(\chi_{925}(24,\cdot)\) | 925.bo | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-i\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) |
| \(\chi_{925}(26,\cdot)\) | 925.e | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{925}(27,\cdot)\) | 925.bw | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{47}{60}\right)\) |
| \(\chi_{925}(28,\cdot)\) | 925.ch | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{53}{180}\right)\) | \(e\left(\frac{1}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{107}{180}\right)\) | \(e\left(\frac{7}{180}\right)\) |
| \(\chi_{925}(29,\cdot)\) | 925.bx | 60 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{19}{60}\right)\) |
| \(\chi_{925}(31,\cdot)\) | 925.bh | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) |
| \(\chi_{925}(32,\cdot)\) | 925.bq | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(-i\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
| \(\chi_{925}(33,\cdot)\) | 925.cc | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{173}{180}\right)\) |
| \(\chi_{925}(34,\cdot)\) | 925.bz | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) |
| \(\chi_{925}(36,\cdot)\) | 925.r | 10 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) |
| \(\chi_{925}(38,\cdot)\) | 925.bf | 20 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-i\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) |
| \(\chi_{925}(39,\cdot)\) | 925.cf | 180 | yes | \(-1\) | \(1\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{1}{180}\right)\) |
| \(\chi_{925}(41,\cdot)\) | 925.ca | 90 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) |