sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(920, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,22,33,18]))
pari:[g,chi] = znchar(Mod(333,920))
| Modulus: | \(920\) | |
| Conductor: | \(920\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(44\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{920}(37,\cdot)\)
\(\chi_{920}(53,\cdot)\)
\(\chi_{920}(157,\cdot)\)
\(\chi_{920}(237,\cdot)\)
\(\chi_{920}(293,\cdot)\)
\(\chi_{920}(333,\cdot)\)
\(\chi_{920}(373,\cdot)\)
\(\chi_{920}(477,\cdot)\)
\(\chi_{920}(493,\cdot)\)
\(\chi_{920}(517,\cdot)\)
\(\chi_{920}(557,\cdot)\)
\(\chi_{920}(573,\cdot)\)
\(\chi_{920}(613,\cdot)\)
\(\chi_{920}(677,\cdot)\)
\(\chi_{920}(733,\cdot)\)
\(\chi_{920}(757,\cdot)\)
\(\chi_{920}(773,\cdot)\)
\(\chi_{920}(797,\cdot)\)
\(\chi_{920}(893,\cdot)\)
\(\chi_{920}(917,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((231,461,737,281)\) → \((1,-1,-i,e\left(\frac{9}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(27\) | \(29\) |
| \( \chi_{ 920 }(333, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{27}{44}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{4}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)