from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(917415, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([15,0,16,0,0]))
pari: [g,chi] = znchar(Mod(745736,917415))
Basic properties
Modulus: | \(917415\) | |
Conductor: | \(171\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(18\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{171}(5,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 917415.dld
\(\chi_{917415}(69746,\cdot)\) \(\chi_{917415}(295076,\cdot)\) \(\chi_{917415}(584786,\cdot)\) \(\chi_{917415}(745736,\cdot)\) \(\chi_{917415}(777926,\cdot)\) \(\chi_{917415}(842306,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{9})\) |
Fixed field: | Number field defined by a degree 18 polynomial |
Values on generators
\((101936,366967,772561,221446,371926)\) → \((e\left(\frac{5}{6}\right),1,e\left(\frac{8}{9}\right),1,1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 917415 }(745736, a) \) | \(-1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) |
sage: chi.jacobi_sum(n)