sage: H = DirichletGroup(917415)
pari: g = idealstar(,917415,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 435456 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{12}\times C_{36}\times C_{252}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{917415}(101936,\cdot)$, $\chi_{917415}(366967,\cdot)$, $\chi_{917415}(772561,\cdot)$, $\chi_{917415}(221446,\cdot)$, $\chi_{917415}(371926,\cdot)$ |
First 32 of 435456 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{917415}(1,\cdot)\) | 917415.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{917415}(2,\cdot)\) | 917415.uvf | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{143}{252}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(i\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{917415}(4,\cdot)\) | 917415.phi | 126 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(-1\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{917415}(7,\cdot)\) | 917415.tiy | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{143}{252}\right)\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{127}{252}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{61}{252}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{155}{252}\right)\) |
\(\chi_{917415}(8,\cdot)\) | 917415.nbf | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-i\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{917415}(11,\cdot)\) | 917415.mtc | 84 | no | \(1\) | \(1\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(-i\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{917415}(13,\cdot)\) | 917415.pqs | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{61}{252}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{139}{252}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{14}\right)\) |
\(\chi_{917415}(14,\cdot)\) | 917415.upu | 252 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{139}{252}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{179}{252}\right)\) |
\(\chi_{917415}(16,\cdot)\) | 917415.lmo | 63 | no | \(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{917415}(17,\cdot)\) | 917415.flq | 36 | no | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{29}{36}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(1\) |
\(\chi_{917415}(22,\cdot)\) | 917415.ves | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{155}{252}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{179}{252}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(1\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{917415}(23,\cdot)\) | 917415.ugz | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{121}{252}\right)\) | \(e\left(\frac{19}{63}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{22}{63}\right)\) |
\(\chi_{917415}(26,\cdot)\) | 917415.mrn | 84 | no | \(1\) | \(1\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{55}{84}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{42}\right)\) |
\(\chi_{917415}(28,\cdot)\) | 917415.ijf | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) |
\(\chi_{917415}(31,\cdot)\) | 917415.lzf | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{28}\right)\) |
\(\chi_{917415}(32,\cdot)\) | 917415.uvf | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{211}{252}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{67}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(i\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{917415}(34,\cdot)\) | 917415.phl | 126 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{47}{126}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{917415}(41,\cdot)\) | 917415.hzj | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{917415}(43,\cdot)\) | 917415.slq | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{131}{252}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{121}{126}\right)\) |
\(\chi_{917415}(44,\cdot)\) | 917415.pzr | 252 | no | \(1\) | \(1\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{205}{252}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(i\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{917415}(46,\cdot)\) | 917415.ieg | 36 | no | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{917415}(47,\cdot)\) | 917415.txl | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{179}{252}\right)\) | \(e\left(\frac{139}{252}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{61}{252}\right)\) |
\(\chi_{917415}(49,\cdot)\) | 917415.oii | 126 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{126}\right)\) | \(e\left(\frac{17}{63}\right)\) | \(e\left(\frac{1}{126}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{29}{126}\right)\) |
\(\chi_{917415}(52,\cdot)\) | 917415.uzz | 252 | yes | \(-1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{95}{252}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{191}{252}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{42}\right)\) |
\(\chi_{917415}(53,\cdot)\) | 917415.rwa | 252 | no | \(-1\) | \(1\) | \(e\left(\frac{65}{252}\right)\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{101}{252}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{169}{252}\right)\) | \(e\left(\frac{83}{126}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{143}{252}\right)\) |
\(\chi_{917415}(56,\cdot)\) | 917415.uep | 252 | no | \(1\) | \(1\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{13}{63}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{43}{252}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{227}{252}\right)\) |
\(\chi_{917415}(59,\cdot)\) | 917415.fhu | 36 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{13}{18}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{917415}(61,\cdot)\) | 917415.vam | 252 | no | \(1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{1}{63}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(-1\) | \(e\left(\frac{11}{28}\right)\) |
\(\chi_{917415}(62,\cdot)\) | 917415.psg | 252 | no | \(1\) | \(1\) | \(e\left(\frac{83}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{83}{252}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{84}\right)\) |
\(\chi_{917415}(64,\cdot)\) | 917415.lld | 42 | no | \(1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(-1\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{917415}(67,\cdot)\) | 917415.psx | 252 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{247}{252}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{16}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{15}{28}\right)\) |
\(\chi_{917415}(68,\cdot)\) | 917415.nbm | 84 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{73}{84}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{4}{21}\right)\) |