Properties

Conductor 915
Order 2
Real Yes
Primitive Yes
Parity Odd
Orbit Label 915.e

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(915)
 
sage: chi = H[914]
 
pari: [g,chi] = znchar(Mod(914,915))
 

Kronecker symbol representation

sage: kronecker_character(-915)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-915}{\bullet}\right)\)

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 915
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 2
Real = Yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 915.e
Orbit index = 5

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{915}(914,\cdot)\)

Values on generators

\((611,367,856)\) → \((-1,-1,-1)\)

Values

-112478111314161719
\(-1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(1\)
value at  e.g. 2

Related number fields

Field of values \(\Q\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 915 }(914,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{915}(914,\cdot)) = \sum_{r\in \Z/915\Z} \chi_{915}(914,r) e\left(\frac{2r}{915}\right) = -30.2489669245i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 915 }(914,·),\chi_{ 915 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{915}(914,\cdot),\chi_{915}(1,\cdot)) = \sum_{r\in \Z/915\Z} \chi_{915}(914,r) \chi_{915}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 915 }(914,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{915}(914,·)) = \sum_{r \in \Z/915\Z} \chi_{915}(914,r) e\left(\frac{1 r + 2 r^{-1}}{915}\right) = -0.0 \)