sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(91)
sage: chi = H[34]
pari: [g,chi] = znchar(Mod(34,91))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 91 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 4 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 91.i |
Orbit index | = | 9 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{91}(34,\cdot)\) \(\chi_{91}(83,\cdot)\)
Values on generators
\((66,15)\) → \((-1,i)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
\(1\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(1\) |
Related number fields
Field of values | \(\Q(i)\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{91}(34,\cdot)) = \sum_{r\in \Z/91\Z} \chi_{91}(34,r) e\left(\frac{2r}{91}\right) = -2.7643645938+-9.1300760343i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{91}(34,\cdot),\chi_{91}(1,\cdot)) = \sum_{r\in \Z/91\Z} \chi_{91}(34,r) \chi_{91}(1,1-r) = 1 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{91}(34,·))
= \sum_{r \in \Z/91\Z}
\chi_{91}(34,r) e\left(\frac{1 r + 2 r^{-1}}{91}\right)
= 14.298992881+14.298992881i \)