Properties

Label 9025.bg
Modulus $9025$
Conductor $475$
Order $45$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9025, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([36,50])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(606,9025)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(9025\)
Conductor: \(475\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(45\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 475.bc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 45 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{9025}(606,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{9025}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{9025}(956,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{9025}(1111,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{9025}(1506,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{9025}(2411,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{44}{45}\right)\)
\(\chi_{9025}(2581,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{32}{45}\right)\)
\(\chi_{9025}(2761,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{9025}(2916,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{9025}(3311,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{45}\right)\)
\(\chi_{9025}(4216,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{9025}(4386,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{9025}(4431,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{9025}(4566,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{9025}(4721,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{9025}(5116,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{9025}(6021,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{9025}(6191,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{9025}(6236,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{9025}(6371,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{9025}(6921,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{9025}(7996,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{9025}(8041,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{9025}(8331,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{45}\right)\)