Character group
|
| ||
| Order | = | 6840 |
|
| ||
| Structure | = | \(C_{2}\times C_{3420}\) |
|
| ||
| Generators | = | $\chi_{9025}(5777,\cdot)$, $\chi_{9025}(3251,\cdot)$ |
First 32 of 6840 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{9025}(1,\cdot)\) | 9025.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{9025}(2,\cdot)\) | 9025.ct | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{181}{3420}\right)\) | \(e\left(\frac{2587}{3420}\right)\) | \(e\left(\frac{181}{1710}\right)\) | \(e\left(\frac{692}{855}\right)\) | \(e\left(\frac{157}{228}\right)\) | \(e\left(\frac{181}{1140}\right)\) | \(e\left(\frac{877}{1710}\right)\) | \(e\left(\frac{28}{285}\right)\) | \(e\left(\frac{983}{1140}\right)\) | \(e\left(\frac{3119}{3420}\right)\) |
| \(\chi_{9025}(3,\cdot)\) | 9025.ct | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{2587}{3420}\right)\) | \(e\left(\frac{3229}{3420}\right)\) | \(e\left(\frac{877}{1710}\right)\) | \(e\left(\frac{599}{855}\right)\) | \(e\left(\frac{163}{228}\right)\) | \(e\left(\frac{307}{1140}\right)\) | \(e\left(\frac{1519}{1710}\right)\) | \(e\left(\frac{16}{285}\right)\) | \(e\left(\frac{521}{1140}\right)\) | \(e\left(\frac{1253}{3420}\right)\) |
| \(\chi_{9025}(4,\cdot)\) | 9025.cq | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{181}{1710}\right)\) | \(e\left(\frac{877}{1710}\right)\) | \(e\left(\frac{181}{855}\right)\) | \(e\left(\frac{529}{855}\right)\) | \(e\left(\frac{43}{114}\right)\) | \(e\left(\frac{181}{570}\right)\) | \(e\left(\frac{22}{855}\right)\) | \(e\left(\frac{56}{285}\right)\) | \(e\left(\frac{413}{570}\right)\) | \(e\left(\frac{1409}{1710}\right)\) |
| \(\chi_{9025}(6,\cdot)\) | 9025.cm | 855 | yes | \(1\) | \(1\) | \(e\left(\frac{692}{855}\right)\) | \(e\left(\frac{599}{855}\right)\) | \(e\left(\frac{529}{855}\right)\) | \(e\left(\frac{436}{855}\right)\) | \(e\left(\frac{23}{57}\right)\) | \(e\left(\frac{122}{285}\right)\) | \(e\left(\frac{343}{855}\right)\) | \(e\left(\frac{44}{285}\right)\) | \(e\left(\frac{91}{285}\right)\) | \(e\left(\frac{238}{855}\right)\) |
| \(\chi_{9025}(7,\cdot)\) | 9025.bz | 228 | no | \(-1\) | \(1\) | \(e\left(\frac{157}{228}\right)\) | \(e\left(\frac{163}{228}\right)\) | \(e\left(\frac{43}{114}\right)\) | \(e\left(\frac{23}{57}\right)\) | \(e\left(\frac{3}{76}\right)\) | \(e\left(\frac{5}{76}\right)\) | \(e\left(\frac{49}{114}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{7}{76}\right)\) | \(e\left(\frac{11}{228}\right)\) |
| \(\chi_{9025}(8,\cdot)\) | 9025.cn | 1140 | yes | \(1\) | \(1\) | \(e\left(\frac{181}{1140}\right)\) | \(e\left(\frac{307}{1140}\right)\) | \(e\left(\frac{181}{570}\right)\) | \(e\left(\frac{122}{285}\right)\) | \(e\left(\frac{5}{76}\right)\) | \(e\left(\frac{181}{380}\right)\) | \(e\left(\frac{307}{570}\right)\) | \(e\left(\frac{28}{95}\right)\) | \(e\left(\frac{223}{380}\right)\) | \(e\left(\frac{839}{1140}\right)\) |
| \(\chi_{9025}(9,\cdot)\) | 9025.cq | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{877}{1710}\right)\) | \(e\left(\frac{1519}{1710}\right)\) | \(e\left(\frac{22}{855}\right)\) | \(e\left(\frac{343}{855}\right)\) | \(e\left(\frac{49}{114}\right)\) | \(e\left(\frac{307}{570}\right)\) | \(e\left(\frac{664}{855}\right)\) | \(e\left(\frac{32}{285}\right)\) | \(e\left(\frac{521}{570}\right)\) | \(e\left(\frac{1253}{1710}\right)\) |
| \(\chi_{9025}(11,\cdot)\) | 9025.cb | 285 | yes | \(1\) | \(1\) | \(e\left(\frac{28}{285}\right)\) | \(e\left(\frac{16}{285}\right)\) | \(e\left(\frac{56}{285}\right)\) | \(e\left(\frac{44}{285}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{28}{95}\right)\) | \(e\left(\frac{32}{285}\right)\) | \(e\left(\frac{21}{95}\right)\) | \(e\left(\frac{24}{95}\right)\) | \(e\left(\frac{92}{285}\right)\) |
| \(\chi_{9025}(12,\cdot)\) | 9025.cn | 1140 | yes | \(1\) | \(1\) | \(e\left(\frac{983}{1140}\right)\) | \(e\left(\frac{521}{1140}\right)\) | \(e\left(\frac{413}{570}\right)\) | \(e\left(\frac{91}{285}\right)\) | \(e\left(\frac{7}{76}\right)\) | \(e\left(\frac{223}{380}\right)\) | \(e\left(\frac{521}{570}\right)\) | \(e\left(\frac{24}{95}\right)\) | \(e\left(\frac{69}{380}\right)\) | \(e\left(\frac{217}{1140}\right)\) |
| \(\chi_{9025}(13,\cdot)\) | 9025.ct | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{3119}{3420}\right)\) | \(e\left(\frac{1253}{3420}\right)\) | \(e\left(\frac{1409}{1710}\right)\) | \(e\left(\frac{238}{855}\right)\) | \(e\left(\frac{11}{228}\right)\) | \(e\left(\frac{839}{1140}\right)\) | \(e\left(\frac{1253}{1710}\right)\) | \(e\left(\frac{92}{285}\right)\) | \(e\left(\frac{217}{1140}\right)\) | \(e\left(\frac{1861}{3420}\right)\) |
| \(\chi_{9025}(14,\cdot)\) | 9025.cp | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{634}{855}\right)\) | \(e\left(\frac{403}{855}\right)\) | \(e\left(\frac{413}{855}\right)\) | \(e\left(\frac{182}{855}\right)\) | \(e\left(\frac{83}{114}\right)\) | \(e\left(\frac{64}{285}\right)\) | \(e\left(\frac{806}{855}\right)\) | \(e\left(\frac{238}{285}\right)\) | \(e\left(\frac{272}{285}\right)\) | \(e\left(\frac{821}{855}\right)\) |
| \(\chi_{9025}(16,\cdot)\) | 9025.cm | 855 | yes | \(1\) | \(1\) | \(e\left(\frac{181}{855}\right)\) | \(e\left(\frac{22}{855}\right)\) | \(e\left(\frac{362}{855}\right)\) | \(e\left(\frac{203}{855}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{181}{285}\right)\) | \(e\left(\frac{44}{855}\right)\) | \(e\left(\frac{112}{285}\right)\) | \(e\left(\frac{128}{285}\right)\) | \(e\left(\frac{554}{855}\right)\) |
| \(\chi_{9025}(17,\cdot)\) | 9025.cs | 3420 | yes | \(-1\) | \(1\) | \(e\left(\frac{1063}{3420}\right)\) | \(e\left(\frac{1381}{3420}\right)\) | \(e\left(\frac{1063}{1710}\right)\) | \(e\left(\frac{611}{855}\right)\) | \(e\left(\frac{85}{228}\right)\) | \(e\left(\frac{1063}{1140}\right)\) | \(e\left(\frac{1381}{1710}\right)\) | \(e\left(\frac{229}{285}\right)\) | \(e\left(\frac{29}{1140}\right)\) | \(e\left(\frac{2597}{3420}\right)\) |
| \(\chi_{9025}(18,\cdot)\) | 9025.bk | 76 | no | \(1\) | \(1\) | \(e\left(\frac{43}{76}\right)\) | \(e\left(\frac{49}{76}\right)\) | \(e\left(\frac{5}{38}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{9}{76}\right)\) | \(e\left(\frac{53}{76}\right)\) | \(e\left(\frac{11}{38}\right)\) | \(e\left(\frac{4}{19}\right)\) | \(e\left(\frac{59}{76}\right)\) | \(e\left(\frac{49}{76}\right)\) |
| \(\chi_{9025}(21,\cdot)\) | 9025.cr | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{761}{1710}\right)\) | \(e\left(\frac{1127}{1710}\right)\) | \(e\left(\frac{761}{855}\right)\) | \(e\left(\frac{89}{855}\right)\) | \(e\left(\frac{43}{57}\right)\) | \(e\left(\frac{191}{570}\right)\) | \(e\left(\frac{272}{855}\right)\) | \(e\left(\frac{226}{285}\right)\) | \(e\left(\frac{313}{570}\right)\) | \(e\left(\frac{709}{1710}\right)\) |
| \(\chi_{9025}(22,\cdot)\) | 9025.ct | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{517}{3420}\right)\) | \(e\left(\frac{2779}{3420}\right)\) | \(e\left(\frac{517}{1710}\right)\) | \(e\left(\frac{824}{855}\right)\) | \(e\left(\frac{97}{228}\right)\) | \(e\left(\frac{517}{1140}\right)\) | \(e\left(\frac{1069}{1710}\right)\) | \(e\left(\frac{91}{285}\right)\) | \(e\left(\frac{131}{1140}\right)\) | \(e\left(\frac{803}{3420}\right)\) |
| \(\chi_{9025}(23,\cdot)\) | 9025.cs | 3420 | yes | \(-1\) | \(1\) | \(e\left(\frac{3341}{3420}\right)\) | \(e\left(\frac{647}{3420}\right)\) | \(e\left(\frac{1631}{1710}\right)\) | \(e\left(\frac{142}{855}\right)\) | \(e\left(\frac{179}{228}\right)\) | \(e\left(\frac{1061}{1140}\right)\) | \(e\left(\frac{647}{1710}\right)\) | \(e\left(\frac{98}{285}\right)\) | \(e\left(\frac{163}{1140}\right)\) | \(e\left(\frac{3079}{3420}\right)\) |
| \(\chi_{9025}(24,\cdot)\) | 9025.cc | 342 | no | \(1\) | \(1\) | \(e\left(\frac{313}{342}\right)\) | \(e\left(\frac{73}{342}\right)\) | \(e\left(\frac{142}{171}\right)\) | \(e\left(\frac{22}{171}\right)\) | \(e\left(\frac{89}{114}\right)\) | \(e\left(\frac{85}{114}\right)\) | \(e\left(\frac{73}{171}\right)\) | \(e\left(\frac{20}{57}\right)\) | \(e\left(\frac{5}{114}\right)\) | \(e\left(\frac{35}{342}\right)\) |
| \(\chi_{9025}(26,\cdot)\) | 9025.bh | 57 | no | \(1\) | \(1\) | \(e\left(\frac{55}{57}\right)\) | \(e\left(\frac{7}{57}\right)\) | \(e\left(\frac{53}{57}\right)\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{14}{57}\right)\) | \(e\left(\frac{8}{19}\right)\) | \(e\left(\frac{1}{19}\right)\) | \(e\left(\frac{26}{57}\right)\) |
| \(\chi_{9025}(27,\cdot)\) | 9025.cn | 1140 | yes | \(1\) | \(1\) | \(e\left(\frac{307}{1140}\right)\) | \(e\left(\frac{949}{1140}\right)\) | \(e\left(\frac{307}{570}\right)\) | \(e\left(\frac{29}{285}\right)\) | \(e\left(\frac{11}{76}\right)\) | \(e\left(\frac{307}{380}\right)\) | \(e\left(\frac{379}{570}\right)\) | \(e\left(\frac{16}{95}\right)\) | \(e\left(\frac{141}{380}\right)\) | \(e\left(\frac{113}{1140}\right)\) |
| \(\chi_{9025}(28,\cdot)\) | 9025.bv | 180 | no | \(-1\) | \(1\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{157}{180}\right)\) |
| \(\chi_{9025}(29,\cdot)\) | 9025.cp | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{128}{855}\right)\) | \(e\left(\frac{521}{855}\right)\) | \(e\left(\frac{256}{855}\right)\) | \(e\left(\frac{649}{855}\right)\) | \(e\left(\frac{109}{114}\right)\) | \(e\left(\frac{128}{285}\right)\) | \(e\left(\frac{187}{855}\right)\) | \(e\left(\frac{191}{285}\right)\) | \(e\left(\frac{259}{285}\right)\) | \(e\left(\frac{217}{855}\right)\) |
| \(\chi_{9025}(31,\cdot)\) | 9025.ci | 570 | yes | \(-1\) | \(1\) | \(e\left(\frac{163}{570}\right)\) | \(e\left(\frac{541}{570}\right)\) | \(e\left(\frac{163}{285}\right)\) | \(e\left(\frac{67}{285}\right)\) | \(e\left(\frac{17}{19}\right)\) | \(e\left(\frac{163}{190}\right)\) | \(e\left(\frac{256}{285}\right)\) | \(e\left(\frac{73}{95}\right)\) | \(e\left(\frac{99}{190}\right)\) | \(e\left(\frac{47}{570}\right)\) |
| \(\chi_{9025}(32,\cdot)\) | 9025.ck | 684 | no | \(1\) | \(1\) | \(e\left(\frac{181}{684}\right)\) | \(e\left(\frac{535}{684}\right)\) | \(e\left(\frac{181}{342}\right)\) | \(e\left(\frac{8}{171}\right)\) | \(e\left(\frac{101}{228}\right)\) | \(e\left(\frac{181}{228}\right)\) | \(e\left(\frac{193}{342}\right)\) | \(e\left(\frac{28}{57}\right)\) | \(e\left(\frac{71}{228}\right)\) | \(e\left(\frac{383}{684}\right)\) |
| \(\chi_{9025}(33,\cdot)\) | 9025.ct | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{2923}{3420}\right)\) | \(e\left(\frac{1}{3420}\right)\) | \(e\left(\frac{1213}{1710}\right)\) | \(e\left(\frac{731}{855}\right)\) | \(e\left(\frac{103}{228}\right)\) | \(e\left(\frac{643}{1140}\right)\) | \(e\left(\frac{1}{1710}\right)\) | \(e\left(\frac{79}{285}\right)\) | \(e\left(\frac{809}{1140}\right)\) | \(e\left(\frac{2357}{3420}\right)\) |
| \(\chi_{9025}(34,\cdot)\) | 9025.cp | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{311}{855}\right)\) | \(e\left(\frac{137}{855}\right)\) | \(e\left(\frac{622}{855}\right)\) | \(e\left(\frac{448}{855}\right)\) | \(e\left(\frac{7}{114}\right)\) | \(e\left(\frac{26}{285}\right)\) | \(e\left(\frac{274}{855}\right)\) | \(e\left(\frac{257}{285}\right)\) | \(e\left(\frac{253}{285}\right)\) | \(e\left(\frac{574}{855}\right)\) |
| \(\chi_{9025}(36,\cdot)\) | 9025.cm | 855 | yes | \(1\) | \(1\) | \(e\left(\frac{529}{855}\right)\) | \(e\left(\frac{343}{855}\right)\) | \(e\left(\frac{203}{855}\right)\) | \(e\left(\frac{17}{855}\right)\) | \(e\left(\frac{46}{57}\right)\) | \(e\left(\frac{244}{285}\right)\) | \(e\left(\frac{686}{855}\right)\) | \(e\left(\frac{88}{285}\right)\) | \(e\left(\frac{182}{285}\right)\) | \(e\left(\frac{476}{855}\right)\) |
| \(\chi_{9025}(37,\cdot)\) | 9025.cg | 380 | yes | \(1\) | \(1\) | \(e\left(\frac{221}{380}\right)\) | \(e\left(\frac{167}{380}\right)\) | \(e\left(\frac{31}{190}\right)\) | \(e\left(\frac{2}{95}\right)\) | \(e\left(\frac{75}{76}\right)\) | \(e\left(\frac{283}{380}\right)\) | \(e\left(\frac{167}{190}\right)\) | \(e\left(\frac{59}{95}\right)\) | \(e\left(\frac{229}{380}\right)\) | \(e\left(\frac{319}{380}\right)\) |
| \(\chi_{9025}(39,\cdot)\) | 9025.bx | 190 | yes | \(1\) | \(1\) | \(e\left(\frac{127}{190}\right)\) | \(e\left(\frac{59}{190}\right)\) | \(e\left(\frac{32}{95}\right)\) | \(e\left(\frac{93}{95}\right)\) | \(e\left(\frac{29}{38}\right)\) | \(e\left(\frac{1}{190}\right)\) | \(e\left(\frac{59}{95}\right)\) | \(e\left(\frac{36}{95}\right)\) | \(e\left(\frac{123}{190}\right)\) | \(e\left(\frac{173}{190}\right)\) |
| \(\chi_{9025}(41,\cdot)\) | 9025.cr | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{677}{1710}\right)\) | \(e\left(\frac{1079}{1710}\right)\) | \(e\left(\frac{677}{855}\right)\) | \(e\left(\frac{23}{855}\right)\) | \(e\left(\frac{22}{57}\right)\) | \(e\left(\frac{107}{570}\right)\) | \(e\left(\frac{224}{855}\right)\) | \(e\left(\frac{52}{285}\right)\) | \(e\left(\frac{241}{570}\right)\) | \(e\left(\frac{433}{1710}\right)\) |
| \(\chi_{9025}(42,\cdot)\) | 9025.cs | 3420 | yes | \(-1\) | \(1\) | \(e\left(\frac{1703}{3420}\right)\) | \(e\left(\frac{1421}{3420}\right)\) | \(e\left(\frac{1703}{1710}\right)\) | \(e\left(\frac{781}{855}\right)\) | \(e\left(\frac{101}{228}\right)\) | \(e\left(\frac{563}{1140}\right)\) | \(e\left(\frac{1421}{1710}\right)\) | \(e\left(\frac{254}{285}\right)\) | \(e\left(\frac{469}{1140}\right)\) | \(e\left(\frac{1117}{3420}\right)\) |