sage: H = DirichletGroup(9016)
pari: g = idealstar(,9016,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 3696 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{462}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{9016}(2255,\cdot)$, $\chi_{9016}(4509,\cdot)$, $\chi_{9016}(1473,\cdot)$, $\chi_{9016}(1569,\cdot)$ |
First 32 of 3696 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{9016}(1,\cdot)\) | 9016.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{9016}(3,\cdot)\) | 9016.er | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{305}{462}\right)\) | \(e\left(\frac{212}{231}\right)\) | \(e\left(\frac{74}{231}\right)\) | \(e\left(\frac{115}{231}\right)\) | \(e\left(\frac{36}{77}\right)\) | \(e\left(\frac{89}{154}\right)\) | \(e\left(\frac{317}{462}\right)\) | \(e\left(\frac{49}{66}\right)\) | \(e\left(\frac{193}{231}\right)\) | \(e\left(\frac{151}{154}\right)\) |
\(\chi_{9016}(5,\cdot)\) | 9016.en | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{212}{231}\right)\) | \(e\left(\frac{263}{462}\right)\) | \(e\left(\frac{193}{231}\right)\) | \(e\left(\frac{122}{231}\right)\) | \(e\left(\frac{71}{77}\right)\) | \(e\left(\frac{75}{154}\right)\) | \(e\left(\frac{134}{231}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{32}{231}\right)\) | \(e\left(\frac{58}{77}\right)\) |
\(\chi_{9016}(9,\cdot)\) | 9016.ei | 231 | no | \(1\) | \(1\) | \(e\left(\frac{74}{231}\right)\) | \(e\left(\frac{193}{231}\right)\) | \(e\left(\frac{148}{231}\right)\) | \(e\left(\frac{230}{231}\right)\) | \(e\left(\frac{72}{77}\right)\) | \(e\left(\frac{12}{77}\right)\) | \(e\left(\frac{86}{231}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{155}{231}\right)\) | \(e\left(\frac{74}{77}\right)\) |
\(\chi_{9016}(11,\cdot)\) | 9016.ek | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{115}{231}\right)\) | \(e\left(\frac{122}{231}\right)\) | \(e\left(\frac{230}{231}\right)\) | \(e\left(\frac{359}{462}\right)\) | \(e\left(\frac{101}{154}\right)\) | \(e\left(\frac{2}{77}\right)\) | \(e\left(\frac{311}{462}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{13}{231}\right)\) | \(e\left(\frac{38}{77}\right)\) |
\(\chi_{9016}(13,\cdot)\) | 9016.eg | 154 | yes | \(-1\) | \(1\) | \(e\left(\frac{36}{77}\right)\) | \(e\left(\frac{71}{77}\right)\) | \(e\left(\frac{72}{77}\right)\) | \(e\left(\frac{101}{154}\right)\) | \(e\left(\frac{26}{77}\right)\) | \(e\left(\frac{30}{77}\right)\) | \(e\left(\frac{15}{154}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{65}{77}\right)\) | \(e\left(\frac{31}{77}\right)\) |
\(\chi_{9016}(15,\cdot)\) | 9016.dw | 154 | no | \(1\) | \(1\) | \(e\left(\frac{89}{154}\right)\) | \(e\left(\frac{75}{154}\right)\) | \(e\left(\frac{12}{77}\right)\) | \(e\left(\frac{2}{77}\right)\) | \(e\left(\frac{30}{77}\right)\) | \(e\left(\frac{5}{77}\right)\) | \(e\left(\frac{41}{154}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{75}{77}\right)\) | \(e\left(\frac{113}{154}\right)\) |
\(\chi_{9016}(17,\cdot)\) | 9016.es | 462 | no | \(1\) | \(1\) | \(e\left(\frac{317}{462}\right)\) | \(e\left(\frac{134}{231}\right)\) | \(e\left(\frac{86}{231}\right)\) | \(e\left(\frac{311}{462}\right)\) | \(e\left(\frac{15}{154}\right)\) | \(e\left(\frac{41}{154}\right)\) | \(e\left(\frac{25}{231}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{37}{231}\right)\) | \(e\left(\frac{9}{154}\right)\) |
\(\chi_{9016}(19,\cdot)\) | 9016.dd | 66 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{66}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{9016}(25,\cdot)\) | 9016.ei | 231 | no | \(1\) | \(1\) | \(e\left(\frac{193}{231}\right)\) | \(e\left(\frac{32}{231}\right)\) | \(e\left(\frac{155}{231}\right)\) | \(e\left(\frac{13}{231}\right)\) | \(e\left(\frac{65}{77}\right)\) | \(e\left(\frac{75}{77}\right)\) | \(e\left(\frac{37}{231}\right)\) | \(e\left(\frac{23}{33}\right)\) | \(e\left(\frac{64}{231}\right)\) | \(e\left(\frac{39}{77}\right)\) |
\(\chi_{9016}(27,\cdot)\) | 9016.ea | 154 | yes | \(1\) | \(1\) | \(e\left(\frac{151}{154}\right)\) | \(e\left(\frac{58}{77}\right)\) | \(e\left(\frac{74}{77}\right)\) | \(e\left(\frac{38}{77}\right)\) | \(e\left(\frac{31}{77}\right)\) | \(e\left(\frac{113}{154}\right)\) | \(e\left(\frac{9}{154}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{39}{77}\right)\) | \(e\left(\frac{145}{154}\right)\) |
\(\chi_{9016}(29,\cdot)\) | 9016.dt | 154 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{154}\right)\) | \(e\left(\frac{115}{154}\right)\) | \(e\left(\frac{3}{77}\right)\) | \(e\left(\frac{1}{154}\right)\) | \(e\left(\frac{15}{154}\right)\) | \(e\left(\frac{59}{77}\right)\) | \(e\left(\frac{34}{77}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{38}{77}\right)\) | \(e\left(\frac{9}{154}\right)\) |
\(\chi_{9016}(31,\cdot)\) | 9016.dm | 66 | no | \(1\) | \(1\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{9016}(33,\cdot)\) | 9016.es | 462 | no | \(1\) | \(1\) | \(e\left(\frac{73}{462}\right)\) | \(e\left(\frac{103}{231}\right)\) | \(e\left(\frac{73}{231}\right)\) | \(e\left(\frac{127}{462}\right)\) | \(e\left(\frac{19}{154}\right)\) | \(e\left(\frac{93}{154}\right)\) | \(e\left(\frac{83}{231}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{206}{231}\right)\) | \(e\left(\frac{73}{154}\right)\) |
\(\chi_{9016}(37,\cdot)\) | 9016.eq | 462 | yes | \(-1\) | \(1\) | \(e\left(\frac{247}{462}\right)\) | \(e\left(\frac{127}{231}\right)\) | \(e\left(\frac{16}{231}\right)\) | \(e\left(\frac{131}{231}\right)\) | \(e\left(\frac{1}{154}\right)\) | \(e\left(\frac{13}{154}\right)\) | \(e\left(\frac{337}{462}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{23}{231}\right)\) | \(e\left(\frac{93}{154}\right)\) |
\(\chi_{9016}(39,\cdot)\) | 9016.et | 462 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{462}\right)\) | \(e\left(\frac{194}{231}\right)\) | \(e\left(\frac{59}{231}\right)\) | \(e\left(\frac{71}{462}\right)\) | \(e\left(\frac{62}{77}\right)\) | \(e\left(\frac{149}{154}\right)\) | \(e\left(\frac{181}{231}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{157}{231}\right)\) | \(e\left(\frac{59}{154}\right)\) |
\(\chi_{9016}(41,\cdot)\) | 9016.dv | 154 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{154}\right)\) | \(e\left(\frac{139}{154}\right)\) | \(e\left(\frac{13}{77}\right)\) | \(e\left(\frac{15}{77}\right)\) | \(e\left(\frac{65}{154}\right)\) | \(e\left(\frac{76}{77}\right)\) | \(e\left(\frac{115}{154}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{62}{77}\right)\) | \(e\left(\frac{39}{154}\right)\) |
\(\chi_{9016}(43,\cdot)\) | 9016.ef | 154 | yes | \(1\) | \(1\) | \(e\left(\frac{60}{77}\right)\) | \(e\left(\frac{67}{77}\right)\) | \(e\left(\frac{43}{77}\right)\) | \(e\left(\frac{117}{154}\right)\) | \(e\left(\frac{61}{154}\right)\) | \(e\left(\frac{50}{77}\right)\) | \(e\left(\frac{25}{154}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{57}{77}\right)\) | \(e\left(\frac{26}{77}\right)\) |
\(\chi_{9016}(45,\cdot)\) | 9016.cy | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{9016}(47,\cdot)\) | 9016.cx | 42 | no | \(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{9016}(51,\cdot)\) | 9016.ek | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{80}{231}\right)\) | \(e\left(\frac{115}{231}\right)\) | \(e\left(\frac{160}{231}\right)\) | \(e\left(\frac{79}{462}\right)\) | \(e\left(\frac{87}{154}\right)\) | \(e\left(\frac{65}{77}\right)\) | \(e\left(\frac{367}{462}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{230}{231}\right)\) | \(e\left(\frac{3}{77}\right)\) |
\(\chi_{9016}(53,\cdot)\) | 9016.eq | 462 | yes | \(-1\) | \(1\) | \(e\left(\frac{257}{462}\right)\) | \(e\left(\frac{62}{231}\right)\) | \(e\left(\frac{26}{231}\right)\) | \(e\left(\frac{184}{231}\right)\) | \(e\left(\frac{69}{154}\right)\) | \(e\left(\frac{127}{154}\right)\) | \(e\left(\frac{461}{462}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{124}{231}\right)\) | \(e\left(\frac{103}{154}\right)\) |
\(\chi_{9016}(55,\cdot)\) | 9016.eb | 154 | no | \(1\) | \(1\) | \(e\left(\frac{32}{77}\right)\) | \(e\left(\frac{15}{154}\right)\) | \(e\left(\frac{64}{77}\right)\) | \(e\left(\frac{47}{154}\right)\) | \(e\left(\frac{89}{154}\right)\) | \(e\left(\frac{79}{154}\right)\) | \(e\left(\frac{39}{154}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{15}{77}\right)\) | \(e\left(\frac{19}{77}\right)\) |
\(\chi_{9016}(57,\cdot)\) | 9016.ec | 154 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{77}\right)\) | \(e\left(\frac{41}{154}\right)\) | \(e\left(\frac{62}{77}\right)\) | \(e\left(\frac{149}{154}\right)\) | \(e\left(\frac{1}{77}\right)\) | \(e\left(\frac{103}{154}\right)\) | \(e\left(\frac{45}{154}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{41}{77}\right)\) | \(e\left(\frac{16}{77}\right)\) |
\(\chi_{9016}(59,\cdot)\) | 9016.er | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{227}{462}\right)\) | \(e\left(\frac{26}{231}\right)\) | \(e\left(\frac{227}{231}\right)\) | \(e\left(\frac{25}{231}\right)\) | \(e\left(\frac{48}{77}\right)\) | \(e\left(\frac{93}{154}\right)\) | \(e\left(\frac{89}{462}\right)\) | \(e\left(\frac{25}{66}\right)\) | \(e\left(\frac{52}{231}\right)\) | \(e\left(\frac{73}{154}\right)\) |
\(\chi_{9016}(61,\cdot)\) | 9016.en | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{231}\right)\) | \(e\left(\frac{401}{462}\right)\) | \(e\left(\frac{58}{231}\right)\) | \(e\left(\frac{215}{231}\right)\) | \(e\left(\frac{74}{77}\right)\) | \(e\left(\frac{153}{154}\right)\) | \(e\left(\frac{221}{231}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{170}{231}\right)\) | \(e\left(\frac{29}{77}\right)\) |
\(\chi_{9016}(65,\cdot)\) | 9016.ep | 462 | no | \(-1\) | \(1\) | \(e\left(\frac{89}{231}\right)\) | \(e\left(\frac{227}{462}\right)\) | \(e\left(\frac{178}{231}\right)\) | \(e\left(\frac{85}{462}\right)\) | \(e\left(\frac{20}{77}\right)\) | \(e\left(\frac{135}{154}\right)\) | \(e\left(\frac{313}{462}\right)\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{227}{231}\right)\) | \(e\left(\frac{12}{77}\right)\) |
\(\chi_{9016}(67,\cdot)\) | 9016.dq | 66 | no | \(1\) | \(1\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) |
\(\chi_{9016}(71,\cdot)\) | 9016.dy | 154 | no | \(-1\) | \(1\) | \(e\left(\frac{81}{154}\right)\) | \(e\left(\frac{51}{77}\right)\) | \(e\left(\frac{4}{77}\right)\) | \(e\left(\frac{27}{154}\right)\) | \(e\left(\frac{10}{77}\right)\) | \(e\left(\frac{29}{154}\right)\) | \(e\left(\frac{71}{77}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{25}{77}\right)\) | \(e\left(\frac{89}{154}\right)\) |
\(\chi_{9016}(73,\cdot)\) | 9016.eu | 462 | no | \(-1\) | \(1\) | \(e\left(\frac{365}{462}\right)\) | \(e\left(\frac{337}{462}\right)\) | \(e\left(\frac{134}{231}\right)\) | \(e\left(\frac{202}{231}\right)\) | \(e\left(\frac{95}{154}\right)\) | \(e\left(\frac{40}{77}\right)\) | \(e\left(\frac{137}{462}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{106}{231}\right)\) | \(e\left(\frac{57}{154}\right)\) |
\(\chi_{9016}(75,\cdot)\) | 9016.er | 462 | yes | \(1\) | \(1\) | \(e\left(\frac{229}{462}\right)\) | \(e\left(\frac{13}{231}\right)\) | \(e\left(\frac{229}{231}\right)\) | \(e\left(\frac{128}{231}\right)\) | \(e\left(\frac{24}{77}\right)\) | \(e\left(\frac{85}{154}\right)\) | \(e\left(\frac{391}{462}\right)\) | \(e\left(\frac{29}{66}\right)\) | \(e\left(\frac{26}{231}\right)\) | \(e\left(\frac{75}{154}\right)\) |
\(\chi_{9016}(79,\cdot)\) | 9016.df | 66 | no | \(1\) | \(1\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{53}{66}\right)\) | \(e\left(\frac{1}{33}\right)\) | \(e\left(\frac{2}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{7}{33}\right)\) | \(e\left(\frac{20}{33}\right)\) | \(e\left(\frac{1}{22}\right)\) |