sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,40,27]))
pari:[g,chi] = znchar(Mod(187,900))
| Modulus: | \(900\) | |
| Conductor: | \(900\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{900}(67,\cdot)\)
\(\chi_{900}(103,\cdot)\)
\(\chi_{900}(187,\cdot)\)
\(\chi_{900}(223,\cdot)\)
\(\chi_{900}(247,\cdot)\)
\(\chi_{900}(283,\cdot)\)
\(\chi_{900}(367,\cdot)\)
\(\chi_{900}(403,\cdot)\)
\(\chi_{900}(427,\cdot)\)
\(\chi_{900}(463,\cdot)\)
\(\chi_{900}(547,\cdot)\)
\(\chi_{900}(583,\cdot)\)
\(\chi_{900}(727,\cdot)\)
\(\chi_{900}(763,\cdot)\)
\(\chi_{900}(787,\cdot)\)
\(\chi_{900}(823,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((451,101,577)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{9}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 900 }(187, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{2}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)