Properties

Label 90.k
Modulus $90$
Conductor $45$
Order $12$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(90, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(7,90))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(90\)
Conductor: \(45\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 45.k
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.84075626953125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{90}(7,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{90}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{90}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{90}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)