# Properties

 Conductor 45 Order 12 Real No Primitive No Parity Odd Orbit Label 90.k

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(90)

sage: chi = H[43]

pari: [g,chi] = znchar(Mod(43,90))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 45 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 12 Real = No sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = Odd Orbit label = 90.k Orbit index = 11

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(11,37)$$ → $$(e\left(\frac{2}{3}\right),-i)$$

## Values

 -1 1 7 11 13 17 19 23 29 31 37 41 $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{12})$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 90 }(43,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{90}(43,\cdot)) = \sum_{r\in \Z/90\Z} \chi_{90}(43,r) e\left(\frac{r}{45}\right) = 5.0072399573+-4.4640282269i$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 90 }(43,·),\chi_{ 90 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{90}(43,\cdot),\chi_{90}(1,\cdot)) = \sum_{r\in \Z/90\Z} \chi_{90}(43,r) \chi_{90}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 90 }(43,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{90}(43,·)) = \sum_{r \in \Z/90\Z} \chi_{90}(43,r) e\left(\frac{1 r + 2 r^{-1}}{90}\right) = 7.7950041702+-2.0886650724i$$