sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(90)
pari: g = idealstar(,90,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 24 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{12}\times C_{2}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{90}(83,\cdot)$, $\chi_{90}(89,\cdot)$ |
Characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
orbit label | order | primitive | -1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{90}(1,\cdot)\) | 90.a | 1 | No | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{90}(7,\cdot)\) | 90.k | 12 | No | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{90}(11,\cdot)\) | 90.h | 6 | No | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{90}(13,\cdot)\) | 90.k | 12 | No | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{90}(17,\cdot)\) | 90.f | 4 | No | \(1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{90}(19,\cdot)\) | 90.c | 2 | No | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
\(\chi_{90}(23,\cdot)\) | 90.l | 12 | No | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{90}(29,\cdot)\) | 90.j | 6 | No | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{90}(31,\cdot)\) | 90.e | 3 | No | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{90}(37,\cdot)\) | 90.g | 4 | No | \(-1\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(1\) |
\(\chi_{90}(41,\cdot)\) | 90.h | 6 | No | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{90}(43,\cdot)\) | 90.k | 12 | No | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{90}(47,\cdot)\) | 90.l | 12 | No | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{90}(49,\cdot)\) | 90.i | 6 | No | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{90}(53,\cdot)\) | 90.f | 4 | No | \(1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(-1\) |
\(\chi_{90}(59,\cdot)\) | 90.j | 6 | No | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{90}(61,\cdot)\) | 90.e | 3 | No | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{90}(67,\cdot)\) | 90.k | 12 | No | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{90}(71,\cdot)\) | 90.d | 2 | No | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
\(\chi_{90}(73,\cdot)\) | 90.g | 4 | No | \(-1\) | \(1\) | \(-i\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(1\) | \(-i\) | \(1\) |
\(\chi_{90}(77,\cdot)\) | 90.l | 12 | No | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{90}(79,\cdot)\) | 90.i | 6 | No | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{90}(83,\cdot)\) | 90.l | 12 | No | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{90}(89,\cdot)\) | 90.b | 2 | No | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |