# Properties

 Modulus 90 Structure $$C_{12}\times C_{2}$$ Order 24

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(90)

pari: g = idealstar(,90,2)

## Character group

 sage: G.order()  pari: g.no Order = 24 sage: H.invariants()  pari: g.cyc Structure = $$C_{12}\times C_{2}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{90}(83,\cdot)$, $\chi_{90}(89,\cdot)$

## Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 7 11 13 17 19 23 29 31 37 41
$$\chi_{90}(1,\cdot)$$ 90.a 1 No $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{90}(7,\cdot)$$ 90.k 12 No $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{90}(11,\cdot)$$ 90.h 6 No $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{90}(13,\cdot)$$ 90.k 12 No $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{90}(17,\cdot)$$ 90.f 4 No $$1$$ $$1$$ $$i$$ $$-1$$ $$-i$$ $$-i$$ $$-1$$ $$i$$ $$1$$ $$1$$ $$i$$ $$-1$$
$$\chi_{90}(19,\cdot)$$ 90.c 2 No $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$
$$\chi_{90}(23,\cdot)$$ 90.l 12 No $$1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{90}(29,\cdot)$$ 90.j 6 No $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{90}(31,\cdot)$$ 90.e 3 No $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{90}(37,\cdot)$$ 90.g 4 No $$-1$$ $$1$$ $$i$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$-i$$ $$-1$$ $$1$$ $$i$$ $$1$$
$$\chi_{90}(41,\cdot)$$ 90.h 6 No $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{90}(43,\cdot)$$ 90.k 12 No $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{90}(47,\cdot)$$ 90.l 12 No $$1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$i$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{90}(49,\cdot)$$ 90.i 6 No $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{90}(53,\cdot)$$ 90.f 4 No $$1$$ $$1$$ $$-i$$ $$-1$$ $$i$$ $$i$$ $$-1$$ $$-i$$ $$1$$ $$1$$ $$-i$$ $$-1$$
$$\chi_{90}(59,\cdot)$$ 90.j 6 No $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{90}(61,\cdot)$$ 90.e 3 No $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{90}(67,\cdot)$$ 90.k 12 No $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{90}(71,\cdot)$$ 90.d 2 No $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$
$$\chi_{90}(73,\cdot)$$ 90.g 4 No $$-1$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$-i$$ $$-1$$ $$i$$ $$-1$$ $$1$$ $$-i$$ $$1$$
$$\chi_{90}(77,\cdot)$$ 90.l 12 No $$1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$-1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$i$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{90}(79,\cdot)$$ 90.i 6 No $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{90}(83,\cdot)$$ 90.l 12 No $$1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$-1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-i$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{90}(89,\cdot)$$ 90.b 2 No $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$