Properties

Modulus 89
Structure \(C_{88}\)
Order 88

Learn more about

Show commands for: SageMath / Pari/GP

sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(89)
 
pari: g = idealstar(,89,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 88
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{88}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{89}(3,\cdot)$

First 32 of 88 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

orbit label order primitive -1 1 2 3 4 5 6 7 8 9 10 11
\(\chi_{89}(1,\cdot)\) 89.a 1 No \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{89}(2,\cdot)\) 89.e 11 Yes \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{89}(3,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{89}(4,\cdot)\) 89.e 11 Yes \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{89}(5,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{89}(6,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{89}(7,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{81}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{89}(8,\cdot)\) 89.e 11 Yes \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{89}(9,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{89}(10,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{89}(11,\cdot)\) 89.f 22 Yes \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{89}(12,\cdot)\) 89.d 8 Yes \(-1\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(-i\) \(i\) \(-1\)
\(\chi_{89}(13,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{23}{88}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{15}{88}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{21}{22}\right)\)
\(\chi_{89}(14,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{65}{88}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{89}(15,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{63}{88}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{89}(16,\cdot)\) 89.e 11 Yes \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{89}(17,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{89}(18,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{89}(19,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{19}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{89}(20,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{89}(21,\cdot)\) 89.g 44 Yes \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{89}(22,\cdot)\) 89.f 22 Yes \(1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{89}(23,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{57}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{9}{22}\right)\)
\(\chi_{89}(24,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{49}{88}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{41}{88}\right)\) \(e\left(\frac{9}{88}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{17}{22}\right)\)
\(\chi_{89}(25,\cdot)\) 89.f 22 Yes \(1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{89}(26,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{39}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{79}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{5}{22}\right)\)
\(\chi_{89}(27,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{51}{88}\right)\) \(e\left(\frac{67}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{89}(28,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{25}{88}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{73}{88}\right)\) \(e\left(\frac{1}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{19}{22}\right)\)
\(\chi_{89}(29,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{59}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{35}{88}\right)\) \(e\left(\frac{27}{88}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{7}{22}\right)\)
\(\chi_{89}(30,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{87}{88}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{71}{88}\right)\) \(e\left(\frac{7}{88}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{1}{22}\right)\)
\(\chi_{89}(31,\cdot)\) 89.h 88 Yes \(-1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{31}{88}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{87}{88}\right)\) \(e\left(\frac{47}{88}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{13}{22}\right)\)
\(\chi_{89}(32,\cdot)\) 89.e 11 Yes \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\)