sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,0,21,20]))
pari:[g,chi] = znchar(Mod(2809,8820))
\(\chi_{8820}(109,\cdot)\)
\(\chi_{8820}(289,\cdot)\)
\(\chi_{8820}(1369,\cdot)\)
\(\chi_{8820}(2629,\cdot)\)
\(\chi_{8820}(2809,\cdot)\)
\(\chi_{8820}(4069,\cdot)\)
\(\chi_{8820}(5149,\cdot)\)
\(\chi_{8820}(5329,\cdot)\)
\(\chi_{8820}(6409,\cdot)\)
\(\chi_{8820}(6589,\cdot)\)
\(\chi_{8820}(7669,\cdot)\)
\(\chi_{8820}(7849,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4411,7841,7057,1081)\) → \((1,1,-1,e\left(\frac{10}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(2809, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) |
sage:chi.jacobi_sum(n)