Properties

Label 88.19
Modulus $88$
Conductor $88$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(88, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,5,3]))
 
pari: [g,chi] = znchar(Mod(19,88))
 

Basic properties

Modulus: \(88\)
Conductor: \(88\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 88.k

\(\chi_{88}(19,\cdot)\) \(\chi_{88}(35,\cdot)\) \(\chi_{88}(51,\cdot)\) \(\chi_{88}(83,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.77265229938688.1

Values on generators

\((23,45,57)\) → \((-1,-1,e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 88 }(19, a) \) \(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 88 }(19,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 88 }(19,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 88 }(19,·),\chi_{ 88 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 88 }(19,·)) \;\) at \(\; a,b = \) e.g. 1,2