Properties

Label 875.177
Modulus $875$
Conductor $875$
Order $300$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(875, base_ring=CyclotomicField(300)) M = H._module chi = DirichletCharacter(H, M([123,100]))
 
Copy content pari:[g,chi] = znchar(Mod(177,875))
 

Basic properties

Modulus: \(875\)
Conductor: \(875\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(300\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 875.bi

\(\chi_{875}(2,\cdot)\) \(\chi_{875}(23,\cdot)\) \(\chi_{875}(37,\cdot)\) \(\chi_{875}(53,\cdot)\) \(\chi_{875}(58,\cdot)\) \(\chi_{875}(67,\cdot)\) \(\chi_{875}(72,\cdot)\) \(\chi_{875}(88,\cdot)\) \(\chi_{875}(102,\cdot)\) \(\chi_{875}(123,\cdot)\) \(\chi_{875}(128,\cdot)\) \(\chi_{875}(137,\cdot)\) \(\chi_{875}(142,\cdot)\) \(\chi_{875}(158,\cdot)\) \(\chi_{875}(163,\cdot)\) \(\chi_{875}(172,\cdot)\) \(\chi_{875}(177,\cdot)\) \(\chi_{875}(198,\cdot)\) \(\chi_{875}(212,\cdot)\) \(\chi_{875}(228,\cdot)\) \(\chi_{875}(233,\cdot)\) \(\chi_{875}(242,\cdot)\) \(\chi_{875}(247,\cdot)\) \(\chi_{875}(263,\cdot)\) \(\chi_{875}(277,\cdot)\) \(\chi_{875}(298,\cdot)\) \(\chi_{875}(303,\cdot)\) \(\chi_{875}(312,\cdot)\) \(\chi_{875}(317,\cdot)\) \(\chi_{875}(333,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{300})$
Fixed field: Number field defined by a degree 300 polynomial (not computed)

Values on generators

\((127,626)\) → \((e\left(\frac{41}{100}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 875 }(177, a) \) \(-1\)\(1\)\(e\left(\frac{23}{300}\right)\)\(e\left(\frac{61}{300}\right)\)\(e\left(\frac{23}{150}\right)\)\(e\left(\frac{7}{25}\right)\)\(e\left(\frac{23}{100}\right)\)\(e\left(\frac{61}{150}\right)\)\(e\left(\frac{37}{75}\right)\)\(e\left(\frac{107}{300}\right)\)\(e\left(\frac{99}{100}\right)\)\(e\left(\frac{23}{75}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 875 }(177,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 875 }(177,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 875 }(177,·),\chi_{ 875 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 875 }(177,·)) \;\) at \(\; a,b = \) e.g. 1,2