Properties

Conductor 432
Order 36
Real no
Primitive no
Minimal no
Parity even
Orbit label 864.bo

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(864)
 
sage: chi = H[25]
 
pari: [g,chi] = znchar(Mod(25,864))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 432
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 36
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = no
Minimal = no
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 864.bo
Orbit index = 41

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{864}(25,\cdot)\) \(\chi_{864}(121,\cdot)\) \(\chi_{864}(169,\cdot)\) \(\chi_{864}(265,\cdot)\) \(\chi_{864}(313,\cdot)\) \(\chi_{864}(409,\cdot)\) \(\chi_{864}(457,\cdot)\) \(\chi_{864}(553,\cdot)\) \(\chi_{864}(601,\cdot)\) \(\chi_{864}(697,\cdot)\) \(\chi_{864}(745,\cdot)\) \(\chi_{864}(841,\cdot)\)

Values on generators

\((703,325,353)\) → \((1,i,e\left(\frac{5}{9}\right))\)

Values

-11571113171923252931
\(1\)\(1\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{1}{9}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{36})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 864 }(25,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{864}(25,\cdot)) = \sum_{r\in \Z/864\Z} \chi_{864}(25,r) e\left(\frac{r}{432}\right) = -10.173789757+40.3050121198i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 864 }(25,·),\chi_{ 864 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{864}(25,\cdot),\chi_{864}(1,\cdot)) = \sum_{r\in \Z/864\Z} \chi_{864}(25,r) \chi_{864}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 864 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{864}(25,·)) = \sum_{r \in \Z/864\Z} \chi_{864}(25,r) e\left(\frac{1 r + 2 r^{-1}}{864}\right) = 0.0 \)