# Properties

 Conductor 861 Order 60 Real no Primitive yes Minimal yes Parity odd Orbit label 861.ch

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(861)

sage: chi = H[2]

pari: [g,chi] = znchar(Mod(2,861))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 861 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 60 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = yes Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = odd Orbit label = 861.ch Orbit index = 60

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(575,493,211)$$ → $$(-1,e\left(\frac{1}{3}\right),e\left(\frac{13}{20}\right))$$

## Values

 -1 1 2 4 5 8 10 11 13 16 17 19 $$-1$$ $$1$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{47}{60}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{17}{60}\right)$$ $$e\left(\frac{31}{60}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{60})$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 861 }(2,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{861}(2,\cdot)) = \sum_{r\in \Z/861\Z} \chi_{861}(2,r) e\left(\frac{2r}{861}\right) = 15.9538713094+-24.6266926371i$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 861 }(2,·),\chi_{ 861 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{861}(2,\cdot),\chi_{861}(1,\cdot)) = \sum_{r\in \Z/861\Z} \chi_{861}(2,r) \chi_{861}(1,1-r) = -1$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 861 }(2,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{861}(2,·)) = \sum_{r \in \Z/861\Z} \chi_{861}(2,r) e\left(\frac{1 r + 2 r^{-1}}{861}\right) = 0.0$$