Properties

Label 8550.3457
Modulus $8550$
Conductor $95$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8550, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,2]))
 
pari: [g,chi] = znchar(Mod(3457,8550))
 

Basic properties

Modulus: \(8550\)
Conductor: \(95\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{95}(37,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8550.p

\(\chi_{8550}(3457,\cdot)\) \(\chi_{8550}(6193,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: 4.4.45125.1

Values on generators

\((1901,1027,1351)\) → \((1,i,-1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8550 }(3457, a) \) \(1\)\(1\)\(i\)\(1\)\(i\)\(i\)\(-i\)\(1\)\(-1\)\(-i\)\(-1\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8550 }(3457,a) \;\) at \(\;a = \) e.g. 2