sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8550, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([20,51,10]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(2497,8550))
         
     
    
  \(\chi_{8550}(103,\cdot)\)
  \(\chi_{8550}(787,\cdot)\)
  \(\chi_{8550}(1627,\cdot)\)
  \(\chi_{8550}(1813,\cdot)\)
  \(\chi_{8550}(2497,\cdot)\)
  \(\chi_{8550}(2653,\cdot)\)
  \(\chi_{8550}(3337,\cdot)\)
  \(\chi_{8550}(3523,\cdot)\)
  \(\chi_{8550}(4363,\cdot)\)
  \(\chi_{8550}(5047,\cdot)\)
  \(\chi_{8550}(5233,\cdot)\)
  \(\chi_{8550}(5917,\cdot)\)
  \(\chi_{8550}(6073,\cdot)\)
  \(\chi_{8550}(7627,\cdot)\)
  \(\chi_{8550}(7783,\cdot)\)
  \(\chi_{8550}(8467,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1901,1027,1351)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{17}{20}\right),e\left(\frac{1}{6}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |       
    
    
      | \( \chi_{ 8550 }(2497, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(-i\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)