Character group
|
| ||
| Order | = | 2160 |
|
| ||
| Structure | = | \(C_{2}\times C_{6}\times C_{180}\) |
|
| ||
| Generators | = | $\chi_{8550}(1901,\cdot)$, $\chi_{8550}(1027,\cdot)$, $\chi_{8550}(1351,\cdot)$ |
First 32 of 2160 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{8550}(1,\cdot)\) | 8550.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{8550}(7,\cdot)\) | 8550.ci | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) |
| \(\chi_{8550}(11,\cdot)\) | 8550.ed | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{8550}(13,\cdot)\) | 8550.he | 180 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{180}\right)\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{1}{36}\right)\) |
| \(\chi_{8550}(17,\cdot)\) | 8550.hd | 180 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{23}{180}\right)\) | \(e\left(\frac{91}{180}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{23}{36}\right)\) |
| \(\chi_{8550}(23,\cdot)\) | 8550.hc | 180 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{121}{180}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{79}{180}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{13}{36}\right)\) |
| \(\chi_{8550}(29,\cdot)\) | 8550.gu | 90 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{5}{18}\right)\) |
| \(\chi_{8550}(31,\cdot)\) | 8550.eh | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{8550}(37,\cdot)\) | 8550.ds | 20 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-i\) |
| \(\chi_{8550}(41,\cdot)\) | 8550.gm | 90 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{8}{9}\right)\) |
| \(\chi_{8550}(43,\cdot)\) | 8550.fa | 36 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) |
| \(\chi_{8550}(47,\cdot)\) | 8550.hi | 180 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{13}{180}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{19}{36}\right)\) |
| \(\chi_{8550}(49,\cdot)\) | 8550.be | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
| \(\chi_{8550}(53,\cdot)\) | 8550.hb | 180 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{29}{180}\right)\) | \(e\left(\frac{103}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{1}{36}\right)\) |
| \(\chi_{8550}(59,\cdot)\) | 8550.gu | 90 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{13}{18}\right)\) |
| \(\chi_{8550}(61,\cdot)\) | 8550.fk | 45 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{4}{9}\right)\) |
| \(\chi_{8550}(67,\cdot)\) | 8550.he | 180 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{133}{180}\right)\) | \(e\left(\frac{161}{180}\right)\) | \(e\left(\frac{127}{180}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{7}{36}\right)\) |
| \(\chi_{8550}(71,\cdot)\) | 8550.gi | 90 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{2}{9}\right)\) |
| \(\chi_{8550}(73,\cdot)\) | 8550.hh | 180 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{101}{180}\right)\) | \(e\left(\frac{67}{180}\right)\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{29}{36}\right)\) |
| \(\chi_{8550}(77,\cdot)\) | 8550.ft | 60 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) |
| \(\chi_{8550}(79,\cdot)\) | 8550.gf | 90 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) |
| \(\chi_{8550}(83,\cdot)\) | 8550.fs | 60 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(i\) |
| \(\chi_{8550}(89,\cdot)\) | 8550.gp | 90 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{17}{18}\right)\) |
| \(\chi_{8550}(91,\cdot)\) | 8550.gk | 90 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{7}{9}\right)\) |
| \(\chi_{8550}(97,\cdot)\) | 8550.he | 180 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{11}{36}\right)\) |
| \(\chi_{8550}(101,\cdot)\) | 8550.dc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(1\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
| \(\chi_{8550}(103,\cdot)\) | 8550.fy | 60 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(i\) |
| \(\chi_{8550}(107,\cdot)\) | 8550.ce | 12 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) |
| \(\chi_{8550}(109,\cdot)\) | 8550.gr | 90 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{13}{18}\right)\) |
| \(\chi_{8550}(113,\cdot)\) | 8550.fq | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{12}\right)\) |
| \(\chi_{8550}(119,\cdot)\) | 8550.ge | 90 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{7}{18}\right)\) |
| \(\chi_{8550}(121,\cdot)\) | 8550.cv | 15 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{3}\right)\) |