Properties

Modulus $8550$
Structure \(C_{2}\times C_{6}\times C_{180}\)
Order $2160$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(8550)
 
Copy content pari:g = idealstar(,8550,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 2160
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{6}\times C_{180}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{8550}(1901,\cdot)$, $\chi_{8550}(1027,\cdot)$, $\chi_{8550}(1351,\cdot)$

First 32 of 2160 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{8550}(1,\cdot)\) 8550.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{8550}(7,\cdot)\) 8550.ci 12 no \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(-i\)
\(\chi_{8550}(11,\cdot)\) 8550.ed 30 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{8550}(13,\cdot)\) 8550.he 180 no \(1\) \(1\) \(-i\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{180}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{8550}(17,\cdot)\) 8550.hd 180 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{8550}(23,\cdot)\) 8550.hc 180 no \(1\) \(1\) \(-i\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{121}{180}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{79}{180}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{8550}(29,\cdot)\) 8550.gu 90 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{8550}(31,\cdot)\) 8550.eh 30 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{8550}(37,\cdot)\) 8550.ds 20 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\)
\(\chi_{8550}(41,\cdot)\) 8550.gm 90 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{8550}(43,\cdot)\) 8550.fa 36 no \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{8550}(47,\cdot)\) 8550.hi 180 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{179}{180}\right)\) \(e\left(\frac{13}{180}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{8550}(49,\cdot)\) 8550.be 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)
\(\chi_{8550}(53,\cdot)\) 8550.hb 180 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{29}{180}\right)\) \(e\left(\frac{103}{180}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{8550}(59,\cdot)\) 8550.gu 90 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(61,\cdot)\) 8550.fk 45 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{8550}(67,\cdot)\) 8550.he 180 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{133}{180}\right)\) \(e\left(\frac{161}{180}\right)\) \(e\left(\frac{127}{180}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{8550}(71,\cdot)\) 8550.gi 90 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{8550}(73,\cdot)\) 8550.hh 180 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{101}{180}\right)\) \(e\left(\frac{67}{180}\right)\) \(e\left(\frac{89}{180}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{8550}(77,\cdot)\) 8550.ft 60 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8550}(79,\cdot)\) 8550.gf 90 no \(-1\) \(1\) \(-1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(83,\cdot)\) 8550.fs 60 no \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{23}{30}\right)\) \(i\)
\(\chi_{8550}(89,\cdot)\) 8550.gp 90 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{8550}(91,\cdot)\) 8550.gk 90 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{8550}(97,\cdot)\) 8550.he 180 no \(1\) \(1\) \(i\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{8550}(101,\cdot)\) 8550.dc 18 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{8550}(103,\cdot)\) 8550.fy 60 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{30}\right)\) \(i\)
\(\chi_{8550}(107,\cdot)\) 8550.ce 12 no \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8550}(109,\cdot)\) 8550.gr 90 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{8550}(113,\cdot)\) 8550.fq 60 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8550}(119,\cdot)\) 8550.ge 90 no \(-1\) \(1\) \(-1\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{8550}(121,\cdot)\) 8550.cv 15 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\)
Click here to search among the remaining 2128 characters.