sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(855, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,9,4]))
pari:[g,chi] = znchar(Mod(748,855))
\(\chi_{855}(163,\cdot)\)
\(\chi_{855}(577,\cdot)\)
\(\chi_{855}(748,\cdot)\)
\(\chi_{855}(847,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,172,496)\) → \((1,-i,e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 855 }(748, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(i\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)