Properties

Modulus $8512$
Structure \(C_{2}\times C_{2}\times C_{6}\times C_{144}\)
Order $3456$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(8512)
 
pari: g = idealstar(,8512,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 3456
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{6}\times C_{144}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{8512}(5055,\cdot)$, $\chi_{8512}(6917,\cdot)$, $\chi_{8512}(7297,\cdot)$, $\chi_{8512}(3137,\cdot)$

First 32 of 3456 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{8512}(1,\cdot)\) 8512.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{8512}(3,\cdot)\) 8512.mf 144 yes \(-1\) \(1\) \(e\left(\frac{89}{144}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{41}{48}\right)\)
\(\chi_{8512}(5,\cdot)\) 8512.lq 144 yes \(-1\) \(1\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{8512}(9,\cdot)\) 8512.lj 72 no \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{8512}(11,\cdot)\) 8512.jk 48 yes \(-1\) \(1\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{8512}(13,\cdot)\) 8512.mb 144 yes \(1\) \(1\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{137}{144}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{8512}(15,\cdot)\) 8512.it 36 no \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{8512}(17,\cdot)\) 8512.il 36 no \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{8512}(23,\cdot)\) 8512.kp 72 no \(-1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{8512}(25,\cdot)\) 8512.kq 72 no \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{8512}(27,\cdot)\) 8512.kk 48 yes \(-1\) \(1\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{8512}(29,\cdot)\) 8512.lv 144 no \(-1\) \(1\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{115}{144}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{48}\right)\)
\(\chi_{8512}(31,\cdot)\) 8512.dd 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{8512}(33,\cdot)\) 8512.fn 18 no \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{8512}(37,\cdot)\) 8512.jp 48 yes \(-1\) \(1\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{8512}(39,\cdot)\) 8512.ig 24 no \(-1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{8512}(41,\cdot)\) 8512.kw 72 no \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{8512}(43,\cdot)\) 8512.lo 144 no \(-1\) \(1\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{23}{48}\right)\)
\(\chi_{8512}(45,\cdot)\) 8512.jm 48 yes \(-1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{8512}(47,\cdot)\) 8512.jd 36 no \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{8512}(51,\cdot)\) 8512.ll 144 yes \(1\) \(1\) \(e\left(\frac{37}{144}\right)\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{8512}(53,\cdot)\) 8512.ls 144 yes \(-1\) \(1\) \(e\left(\frac{79}{144}\right)\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{107}{144}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{31}{48}\right)\)
\(\chi_{8512}(55,\cdot)\) 8512.kr 72 no \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{8512}(59,\cdot)\) 8512.mf 144 yes \(-1\) \(1\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{113}{144}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{8512}(61,\cdot)\) 8512.mg 144 yes \(-1\) \(1\) \(e\left(\frac{121}{144}\right)\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{125}{144}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{25}{48}\right)\)
\(\chi_{8512}(65,\cdot)\) 8512.bd 6 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)
\(\chi_{8512}(67,\cdot)\) 8512.md 144 yes \(1\) \(1\) \(e\left(\frac{1}{144}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{48}\right)\)
\(\chi_{8512}(69,\cdot)\) 8512.ji 48 yes \(1\) \(1\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{9}{16}\right)\)
\(\chi_{8512}(71,\cdot)\) 8512.kv 72 no \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{8512}(73,\cdot)\) 8512.ko 72 no \(-1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{8512}(75,\cdot)\) 8512.js 48 yes \(-1\) \(1\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{8512}(79,\cdot)\) 8512.ip 36 no \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(-i\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{12}\right)\)
Click here to search among the remaining 3424 characters.