sage: H = DirichletGroup(8512)
pari: g = idealstar(,8512,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 3456 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{6}\times C_{144}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{8512}(5055,\cdot)$, $\chi_{8512}(6917,\cdot)$, $\chi_{8512}(7297,\cdot)$, $\chi_{8512}(3137,\cdot)$ |
First 32 of 3456 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8512}(1,\cdot)\) | 8512.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{8512}(3,\cdot)\) | 8512.mf | 144 | yes | \(-1\) | \(1\) | \(e\left(\frac{89}{144}\right)\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{133}{144}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{41}{48}\right)\) |
\(\chi_{8512}(5,\cdot)\) | 8512.lq | 144 | yes | \(-1\) | \(1\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{8512}(9,\cdot)\) | 8512.lj | 72 | no | \(1\) | \(1\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{8512}(11,\cdot)\) | 8512.jk | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{8512}(13,\cdot)\) | 8512.mb | 144 | yes | \(1\) | \(1\) | \(e\left(\frac{133}{144}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{8512}(15,\cdot)\) | 8512.it | 36 | no | \(1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{8512}(17,\cdot)\) | 8512.il | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{8512}(23,\cdot)\) | 8512.kp | 72 | no | \(-1\) | \(1\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{8512}(25,\cdot)\) | 8512.kq | 72 | no | \(1\) | \(1\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{8512}(27,\cdot)\) | 8512.kk | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{8512}(29,\cdot)\) | 8512.lv | 144 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{8512}(31,\cdot)\) | 8512.dd | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
\(\chi_{8512}(33,\cdot)\) | 8512.fn | 18 | no | \(1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(-1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{8512}(37,\cdot)\) | 8512.jp | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{8512}(39,\cdot)\) | 8512.ig | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{8512}(41,\cdot)\) | 8512.kw | 72 | no | \(1\) | \(1\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{8512}(43,\cdot)\) | 8512.lo | 144 | no | \(-1\) | \(1\) | \(e\left(\frac{71}{144}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{8512}(45,\cdot)\) | 8512.jm | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{8512}(47,\cdot)\) | 8512.jd | 36 | no | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{8512}(51,\cdot)\) | 8512.ll | 144 | yes | \(1\) | \(1\) | \(e\left(\frac{37}{144}\right)\) | \(e\left(\frac{7}{144}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{8512}(53,\cdot)\) | 8512.ls | 144 | yes | \(-1\) | \(1\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{8512}(55,\cdot)\) | 8512.kr | 72 | no | \(1\) | \(1\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{8512}(59,\cdot)\) | 8512.mf | 144 | yes | \(-1\) | \(1\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{113}{144}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{103}{144}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{8512}(61,\cdot)\) | 8512.mg | 144 | yes | \(-1\) | \(1\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{125}{144}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{25}{48}\right)\) |
\(\chi_{8512}(65,\cdot)\) | 8512.bd | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{8512}(67,\cdot)\) | 8512.md | 144 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{144}\right)\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{8512}(69,\cdot)\) | 8512.ji | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{8512}(71,\cdot)\) | 8512.kv | 72 | no | \(1\) | \(1\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{8512}(73,\cdot)\) | 8512.ko | 72 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{8512}(75,\cdot)\) | 8512.js | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{8512}(79,\cdot)\) | 8512.ip | 36 | no | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(-i\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |