Properties

Label 8470.4113
Modulus $8470$
Conductor $385$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(8470, base_ring=CyclotomicField(12))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([9,8,6]))
 
pari: [g,chi] = znchar(Mod(4113,8470))
 

Basic properties

Modulus: \(8470\)
Conductor: \(385\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{385}(263,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8470.be

\(\chi_{8470}(4113,\cdot)\) \(\chi_{8470}(5807,\cdot)\) \(\chi_{8470}(6533,\cdot)\) \(\chi_{8470}(8227,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.19946673094455078125.1

Values on generators

\((6777,6051,7141)\) → \((-i,e\left(\frac{2}{3}\right),-1)\)

Values

\(-1\)\(1\)\(3\)\(9\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)\(37\)
\(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(-i\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8470 }(4113,a) \;\) at \(\;a = \) e.g. 2