sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,29]))
pari:[g,chi] = znchar(Mod(83,847))
| Modulus: | \(847\) | |
| Conductor: | \(847\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{847}(6,\cdot)\)
\(\chi_{847}(13,\cdot)\)
\(\chi_{847}(41,\cdot)\)
\(\chi_{847}(62,\cdot)\)
\(\chi_{847}(83,\cdot)\)
\(\chi_{847}(90,\cdot)\)
\(\chi_{847}(139,\cdot)\)
\(\chi_{847}(160,\cdot)\)
\(\chi_{847}(167,\cdot)\)
\(\chi_{847}(195,\cdot)\)
\(\chi_{847}(216,\cdot)\)
\(\chi_{847}(237,\cdot)\)
\(\chi_{847}(244,\cdot)\)
\(\chi_{847}(272,\cdot)\)
\(\chi_{847}(293,\cdot)\)
\(\chi_{847}(314,\cdot)\)
\(\chi_{847}(321,\cdot)\)
\(\chi_{847}(349,\cdot)\)
\(\chi_{847}(370,\cdot)\)
\(\chi_{847}(391,\cdot)\)
\(\chi_{847}(398,\cdot)\)
\(\chi_{847}(426,\cdot)\)
\(\chi_{847}(447,\cdot)\)
\(\chi_{847}(468,\cdot)\)
\(\chi_{847}(503,\cdot)\)
\(\chi_{847}(545,\cdot)\)
\(\chi_{847}(552,\cdot)\)
\(\chi_{847}(580,\cdot)\)
\(\chi_{847}(601,\cdot)\)
\(\chi_{847}(622,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((122,365)\) → \((-1,e\left(\frac{29}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(13\) |
| \( \chi_{ 847 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{7}{55}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)