![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([22,60]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([22,60]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(793,847))
        pari:[g,chi] = znchar(Mod(793,847))
         
     
    
  
   | Modulus: | \(847\) |  | 
   | Conductor: | \(847\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(33\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{847}(23,\cdot)\)
  \(\chi_{847}(67,\cdot)\)
  \(\chi_{847}(100,\cdot)\)
  \(\chi_{847}(144,\cdot)\)
  \(\chi_{847}(177,\cdot)\)
  \(\chi_{847}(221,\cdot)\)
  \(\chi_{847}(254,\cdot)\)
  \(\chi_{847}(298,\cdot)\)
  \(\chi_{847}(331,\cdot)\)
  \(\chi_{847}(375,\cdot)\)
  \(\chi_{847}(408,\cdot)\)
  \(\chi_{847}(452,\cdot)\)
  \(\chi_{847}(529,\cdot)\)
  \(\chi_{847}(562,\cdot)\)
  \(\chi_{847}(639,\cdot)\)
  \(\chi_{847}(683,\cdot)\)
  \(\chi_{847}(716,\cdot)\)
  \(\chi_{847}(760,\cdot)\)
  \(\chi_{847}(793,\cdot)\)
  \(\chi_{847}(837,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((122,365)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{10}{11}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(13\) | 
    
    
      | \( \chi_{ 847 }(793, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{9}{11}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)