Properties

Label 8464.y
Modulus $8464$
Conductor $368$
Order $44$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(44)) M = H._module chi = DirichletCharacter(H, M([22,33,18])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(195,8464)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8464\)
Conductor: \(368\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(44\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 368.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.44.4141890260646712580912980965306954513336276372715662057543551492310346739946349214617837764608.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{8464}(195,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{8464}(411,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{8464}(571,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{8464}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{8464}(803,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{8464}(1939,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{8464}(2179,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{8464}(2379,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{8464}(2475,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{8464}(3731,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{8464}(4427,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{8464}(4643,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{8464}(4803,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{8464}(4891,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{8464}(5035,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{8464}(6171,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{8464}(6411,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{8464}(6611,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{8464}(6707,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{8464}(7963,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{37}{44}\right)\)