sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8464, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,33,36]))
pari:[g,chi] = znchar(Mod(6285,8464))
\(\chi_{8464}(501,\cdot)\)
\(\chi_{8464}(1757,\cdot)\)
\(\chi_{8464}(1853,\cdot)\)
\(\chi_{8464}(2053,\cdot)\)
\(\chi_{8464}(2293,\cdot)\)
\(\chi_{8464}(3429,\cdot)\)
\(\chi_{8464}(3573,\cdot)\)
\(\chi_{8464}(3661,\cdot)\)
\(\chi_{8464}(3821,\cdot)\)
\(\chi_{8464}(4037,\cdot)\)
\(\chi_{8464}(4733,\cdot)\)
\(\chi_{8464}(5989,\cdot)\)
\(\chi_{8464}(6085,\cdot)\)
\(\chi_{8464}(6285,\cdot)\)
\(\chi_{8464}(6525,\cdot)\)
\(\chi_{8464}(7661,\cdot)\)
\(\chi_{8464}(7805,\cdot)\)
\(\chi_{8464}(7893,\cdot)\)
\(\chi_{8464}(8053,\cdot)\)
\(\chi_{8464}(8269,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7407,2117,6353)\) → \((1,-i,e\left(\frac{9}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 8464 }(6285, a) \) |
\(1\) | \(1\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{25}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) |
sage:chi.jacobi_sum(n)