Character group
| ||
Order | = | 3120 |
| ||
Structure | = | \(C_{4}\times C_{780}\) |
| ||
Generators | = | $\chi_{8450}(677,\cdot)$, $\chi_{8450}(3551,\cdot)$ |
First 32 of 3120 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8450}(1,\cdot)\) | 8450.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{8450}(3,\cdot)\) | 8450.cy | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{780}\right)\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{11}{390}\right)\) | \(e\left(\frac{92}{195}\right)\) | \(e\left(\frac{469}{780}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{53}{65}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{11}{260}\right)\) | \(e\left(\frac{193}{390}\right)\) |
\(\chi_{8450}(7,\cdot)\) | 8450.ck | 156 | no | \(1\) | \(1\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{73}{78}\right)\) |
\(\chi_{8450}(9,\cdot)\) | 8450.cu | 390 | no | \(1\) | \(1\) | \(e\left(\frac{11}{390}\right)\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{11}{195}\right)\) | \(e\left(\frac{184}{195}\right)\) | \(e\left(\frac{79}{390}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{41}{65}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{130}\right)\) | \(e\left(\frac{193}{195}\right)\) |
\(\chi_{8450}(11,\cdot)\) | 8450.cw | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{92}{195}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{184}{195}\right)\) | \(e\left(\frac{629}{780}\right)\) | \(e\left(\frac{311}{390}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{31}{260}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{27}{65}\right)\) | \(e\left(\frac{2}{195}\right)\) |
\(\chi_{8450}(17,\cdot)\) | 8450.cz | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{469}{780}\right)\) | \(e\left(\frac{61}{156}\right)\) | \(e\left(\frac{79}{390}\right)\) | \(e\left(\frac{311}{390}\right)\) | \(e\left(\frac{71}{780}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{129}{130}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{209}{260}\right)\) | \(e\left(\frac{287}{390}\right)\) |
\(\chi_{8450}(19,\cdot)\) | 8450.bt | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{8450}(21,\cdot)\) | 8450.cs | 260 | no | \(-1\) | \(1\) | \(e\left(\frac{53}{65}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{41}{65}\right)\) | \(e\left(\frac{31}{260}\right)\) | \(e\left(\frac{129}{130}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{67}{260}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{29}{65}\right)\) | \(e\left(\frac{28}{65}\right)\) |
\(\chi_{8450}(23,\cdot)\) | 8450.bv | 60 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) |
\(\chi_{8450}(27,\cdot)\) | 8450.cq | 260 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{260}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{11}{130}\right)\) | \(e\left(\frac{27}{65}\right)\) | \(e\left(\frac{209}{260}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{29}{65}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{33}{260}\right)\) | \(e\left(\frac{63}{130}\right)\) |
\(\chi_{8450}(29,\cdot)\) | 8450.cu | 390 | no | \(1\) | \(1\) | \(e\left(\frac{193}{390}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{193}{195}\right)\) | \(e\left(\frac{2}{195}\right)\) | \(e\left(\frac{287}{390}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{28}{65}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{63}{130}\right)\) | \(e\left(\frac{89}{195}\right)\) |
\(\chi_{8450}(31,\cdot)\) | 8450.cs | 260 | no | \(-1\) | \(1\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{64}{65}\right)\) | \(e\left(\frac{69}{260}\right)\) | \(e\left(\frac{111}{130}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{233}{260}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{31}{65}\right)\) | \(e\left(\frac{12}{65}\right)\) |
\(\chi_{8450}(33,\cdot)\) | 8450.cx | 780 | no | \(1\) | \(1\) | \(e\left(\frac{379}{780}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{379}{390}\right)\) | \(e\left(\frac{217}{780}\right)\) | \(e\left(\frac{311}{780}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{243}{260}\right)\) | \(e\left(\frac{49}{60}\right)\) | \(e\left(\frac{119}{260}\right)\) | \(e\left(\frac{197}{390}\right)\) |
\(\chi_{8450}(37,\cdot)\) | 8450.da | 780 | no | \(1\) | \(1\) | \(e\left(\frac{137}{780}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{137}{390}\right)\) | \(e\left(\frac{701}{780}\right)\) | \(e\left(\frac{133}{780}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{259}{260}\right)\) | \(e\left(\frac{47}{60}\right)\) | \(e\left(\frac{137}{260}\right)\) | \(e\left(\frac{241}{390}\right)\) |
\(\chi_{8450}(41,\cdot)\) | 8450.cw | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{188}{195}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{181}{195}\right)\) | \(e\left(\frac{251}{780}\right)\) | \(e\left(\frac{59}{390}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{69}{260}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{58}{65}\right)\) | \(e\left(\frac{38}{195}\right)\) |
\(\chi_{8450}(43,\cdot)\) | 8450.ci | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{61}{78}\right)\) |
\(\chi_{8450}(47,\cdot)\) | 8450.co | 260 | no | \(1\) | \(1\) | \(e\left(\frac{7}{260}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{7}{130}\right)\) | \(e\left(\frac{51}{260}\right)\) | \(e\left(\frac{3}{260}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{127}{260}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{21}{260}\right)\) | \(e\left(\frac{111}{130}\right)\) |
\(\chi_{8450}(49,\cdot)\) | 8450.cb | 78 | no | \(1\) | \(1\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{34}{39}\right)\) |
\(\chi_{8450}(51,\cdot)\) | 8450.bg | 26 | no | \(1\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(-1\) | \(e\left(\frac{21}{26}\right)\) | \(1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{8450}(53,\cdot)\) | 8450.cq | 260 | no | \(-1\) | \(1\) | \(e\left(\frac{217}{260}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{87}{130}\right)\) | \(e\left(\frac{54}{65}\right)\) | \(e\left(\frac{223}{260}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{58}{65}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{131}{260}\right)\) | \(e\left(\frac{61}{130}\right)\) |
\(\chi_{8450}(57,\cdot)\) | 8450.br | 52 | no | \(1\) | \(1\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(i\) | \(e\left(\frac{45}{52}\right)\) | \(i\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{8450}(59,\cdot)\) | 8450.db | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{281}{390}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{86}{195}\right)\) | \(e\left(\frac{241}{780}\right)\) | \(e\left(\frac{167}{195}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{59}{260}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{21}{130}\right)\) | \(e\left(\frac{73}{195}\right)\) |
\(\chi_{8450}(61,\cdot)\) | 8450.cm | 195 | no | \(1\) | \(1\) | \(e\left(\frac{172}{195}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{149}{195}\right)\) | \(e\left(\frac{46}{195}\right)\) | \(e\left(\frac{83}{195}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{59}{65}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{42}{65}\right)\) | \(e\left(\frac{97}{195}\right)\) |
\(\chi_{8450}(63,\cdot)\) | 8450.cx | 780 | no | \(1\) | \(1\) | \(e\left(\frac{647}{780}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{257}{390}\right)\) | \(e\left(\frac{461}{780}\right)\) | \(e\left(\frac{463}{780}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{19}{260}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{127}{260}\right)\) | \(e\left(\frac{361}{390}\right)\) |
\(\chi_{8450}(67,\cdot)\) | 8450.cx | 780 | no | \(1\) | \(1\) | \(e\left(\frac{749}{780}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{359}{390}\right)\) | \(e\left(\frac{647}{780}\right)\) | \(e\left(\frac{61}{780}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{153}{260}\right)\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{229}{260}\right)\) | \(e\left(\frac{307}{390}\right)\) |
\(\chi_{8450}(69,\cdot)\) | 8450.cv | 390 | no | \(1\) | \(1\) | \(e\left(\frac{77}{390}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{77}{195}\right)\) | \(e\left(\frac{41}{390}\right)\) | \(e\left(\frac{163}{390}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{119}{130}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{77}{130}\right)\) | \(e\left(\frac{181}{195}\right)\) |
\(\chi_{8450}(71,\cdot)\) | 8450.cw | 780 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{195}\right)\) | \(e\left(\frac{151}{156}\right)\) | \(e\left(\frac{38}{195}\right)\) | \(e\left(\frac{43}{780}\right)\) | \(e\left(\frac{7}{390}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{17}{260}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{19}{65}\right)\) | \(e\left(\frac{64}{195}\right)\) |
\(\chi_{8450}(73,\cdot)\) | 8450.cr | 260 | no | \(1\) | \(1\) | \(e\left(\frac{101}{260}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{101}{130}\right)\) | \(e\left(\frac{123}{260}\right)\) | \(e\left(\frac{229}{260}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{31}{260}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{43}{260}\right)\) | \(e\left(\frac{23}{130}\right)\) |
\(\chi_{8450}(77,\cdot)\) | 8450.cp | 260 | no | \(-1\) | \(1\) | \(e\left(\frac{71}{260}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{71}{130}\right)\) | \(e\left(\frac{59}{130}\right)\) | \(e\left(\frac{49}{260}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{73}{130}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{213}{260}\right)\) | \(e\left(\frac{123}{130}\right)\) |
\(\chi_{8450}(79,\cdot)\) | 8450.ce | 130 | no | \(1\) | \(1\) | \(e\left(\frac{101}{130}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{36}{65}\right)\) | \(e\left(\frac{29}{65}\right)\) | \(e\left(\frac{99}{130}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{48}{65}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{43}{130}\right)\) | \(e\left(\frac{23}{65}\right)\) |
\(\chi_{8450}(81,\cdot)\) | 8450.cm | 195 | no | \(1\) | \(1\) | \(e\left(\frac{11}{195}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{22}{195}\right)\) | \(e\left(\frac{173}{195}\right)\) | \(e\left(\frac{79}{195}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{17}{65}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{11}{65}\right)\) | \(e\left(\frac{191}{195}\right)\) |
\(\chi_{8450}(83,\cdot)\) | 8450.co | 260 | no | \(1\) | \(1\) | \(e\left(\frac{213}{260}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{83}{130}\right)\) | \(e\left(\frac{29}{260}\right)\) | \(e\left(\frac{17}{260}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{113}{260}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{119}{260}\right)\) | \(e\left(\frac{109}{130}\right)\) |