sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,22]))
pari:[g,chi] = znchar(Mod(599,845))
Modulus: | \(845\) | |
Conductor: | \(845\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(26\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{845}(14,\cdot)\)
\(\chi_{845}(79,\cdot)\)
\(\chi_{845}(144,\cdot)\)
\(\chi_{845}(209,\cdot)\)
\(\chi_{845}(274,\cdot)\)
\(\chi_{845}(404,\cdot)\)
\(\chi_{845}(469,\cdot)\)
\(\chi_{845}(534,\cdot)\)
\(\chi_{845}(599,\cdot)\)
\(\chi_{845}(664,\cdot)\)
\(\chi_{845}(729,\cdot)\)
\(\chi_{845}(794,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,171)\) → \((-1,e\left(\frac{11}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 845 }(599, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)