Properties

Label 837.cd
Modulus $837$
Conductor $837$
Order $90$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(837, base_ring=CyclotomicField(90))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([65,84]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(38,837))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(837\)
Conductor: \(837\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{837}(38,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{837}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{837}(113,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{32}{45}\right)\)
\(\chi_{837}(200,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{837}(236,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{837}(245,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{837}(257,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{837}(266,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{29}{45}\right)\)
\(\chi_{837}(317,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{837}(320,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{837}(392,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{837}(479,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{837}(515,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{837}(524,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{837}(536,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{837}(545,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{837}(596,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{837}(599,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{837}(671,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{837}(758,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{837}(794,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{837}(803,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{837}(815,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{837}(824,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{44}{45}\right)\)