Properties

Label 837.cb
Modulus $837$
Conductor $837$
Order $45$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(837, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([70,66])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(76,837)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(837\)
Conductor: \(837\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(45\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 45 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{837}(76,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{837}(112,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{837}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{44}{45}\right)\)
\(\chi_{837}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{837}(142,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{837}(193,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{837}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{837}(268,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{837}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{837}(391,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{837}(400,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{837}(412,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{837}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{837}(472,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{837}(475,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{837}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{837}(634,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{837}(670,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{41}{45}\right)\)
\(\chi_{837}(679,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{29}{45}\right)\)
\(\chi_{837}(691,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{837}(700,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{837}(751,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{32}{45}\right)\)
\(\chi_{837}(754,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{837}(826,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{22}{45}\right)\)