Properties

Label 833.l
Modulus $833$
Conductor $17$
Order $8$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,5])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(246,833)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(833\)
Conductor: \(17\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 17.d
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: \(\Q(\zeta_{17})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{833}(246,\cdot)\) \(1\) \(1\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{833}(393,\cdot)\) \(1\) \(1\) \(i\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{833}(491,\cdot)\) \(1\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{833}(638,\cdot)\) \(1\) \(1\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(i\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\)