sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(832, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,3,10]))
pari:[g,chi] = znchar(Mod(49,832))
\(\chi_{832}(17,\cdot)\)
\(\chi_{832}(49,\cdot)\)
\(\chi_{832}(433,\cdot)\)
\(\chi_{832}(465,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,261,769)\) → \((1,i,e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 832 }(49, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)