# Properties

 Label 8280.1241 Modulus $8280$ Conductor $69$ Order $2$ Real yes Primitive no Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(8280, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,1,0,1]))

pari: [g,chi] = znchar(Mod(1241,8280))

## Basic properties

 Modulus: $$8280$$ Conductor: $$69$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from $$\chi_{69}(68,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 8280.p

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{69})$$

## Values on generators

$$(2071,4141,4601,1657,3961)$$ → $$(1,1,-1,1,-1)$$

## Values

 $$a$$ $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$\chi_{ 8280 }(1241, a)$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 8280 }(1241,a) \;$$ at $$\;a =$$ e.g. 2