sage: H = DirichletGroup(825)
pari: g = idealstar(,825,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 400 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{10}\times C_{20}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{825}(551,\cdot)$, $\chi_{825}(727,\cdot)$, $\chi_{825}(376,\cdot)$ |
First 32 of 400 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{825}(1,\cdot)\) | 825.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{825}(2,\cdot)\) | 825.cr | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) |
\(\chi_{825}(4,\cdot)\) | 825.by | 10 | no | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) |
\(\chi_{825}(7,\cdot)\) | 825.cw | 20 | no | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-i\) |
\(\chi_{825}(8,\cdot)\) | 825.cr | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) |
\(\chi_{825}(13,\cdot)\) | 825.cm | 20 | no | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(-1\) | \(e\left(\frac{1}{5}\right)\) | \(i\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) |
\(\chi_{825}(14,\cdot)\) | 825.bc | 10 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{825}(16,\cdot)\) | 825.m | 5 | no | \(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{825}(17,\cdot)\) | 825.cq | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(i\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) |
\(\chi_{825}(19,\cdot)\) | 825.z | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{825}(23,\cdot)\) | 825.cs | 20 | no | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(-i\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) |
\(\chi_{825}(26,\cdot)\) | 825.bp | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-1\) |
\(\chi_{825}(28,\cdot)\) | 825.cl | 20 | no | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{1}{20}\right)\) | \(-i\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(1\) | \(e\left(\frac{17}{20}\right)\) |
\(\chi_{825}(29,\cdot)\) | 825.br | 10 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{825}(31,\cdot)\) | 825.r | 5 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{825}(32,\cdot)\) | 825.l | 4 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(i\) | \(1\) | \(1\) | \(i\) | \(1\) | \(i\) |
\(\chi_{825}(34,\cdot)\) | 825.bl | 10 | no | \(1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{825}(37,\cdot)\) | 825.db | 20 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(-i\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) |
\(\chi_{825}(38,\cdot)\) | 825.cv | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) |
\(\chi_{825}(41,\cdot)\) | 825.cg | 10 | yes | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{825}(43,\cdot)\) | 825.j | 4 | no | \(1\) | \(1\) | \(i\) | \(-1\) | \(i\) | \(-i\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(1\) | \(i\) |
\(\chi_{825}(46,\cdot)\) | 825.bw | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(-1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{825}(47,\cdot)\) | 825.df | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(-i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) |
\(\chi_{825}(49,\cdot)\) | 825.bx | 10 | no | \(1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-1\) |
\(\chi_{825}(52,\cdot)\) | 825.cx | 20 | no | \(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) |
\(\chi_{825}(53,\cdot)\) | 825.cu | 20 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(i\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) |
\(\chi_{825}(56,\cdot)\) | 825.cd | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) |
\(\chi_{825}(58,\cdot)\) | 825.dc | 20 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) |
\(\chi_{825}(59,\cdot)\) | 825.bc | 10 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{825}(61,\cdot)\) | 825.cc | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(-1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{825}(62,\cdot)\) | 825.cq | 20 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(i\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{9}{20}\right)\) |
\(\chi_{825}(64,\cdot)\) | 825.by | 10 | no | \(1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) |