Properties

Label 8112.ga
Modulus $8112$
Conductor $2704$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,117,0,37])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(67,8112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8112\)
Conductor: \(2704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2704.cy
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8112}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{41}{156}\right)\)
\(\chi_{8112}(475,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{151}{156}\right)\)
\(\chi_{8112}(643,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{85}{156}\right)\)
\(\chi_{8112}(691,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{101}{156}\right)\)
\(\chi_{8112}(1051,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{83}{156}\right)\)
\(\chi_{8112}(1099,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{79}{156}\right)\)
\(\chi_{8112}(1267,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{1}{156}\right)\)
\(\chi_{8112}(1315,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{5}{156}\right)\)
\(\chi_{8112}(1675,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{23}{156}\right)\)
\(\chi_{8112}(1723,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{7}{156}\right)\)
\(\chi_{8112}(1891,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{73}{156}\right)\)
\(\chi_{8112}(2299,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{119}{156}\right)\)
\(\chi_{8112}(2515,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{145}{156}\right)\)
\(\chi_{8112}(2563,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{125}{156}\right)\)
\(\chi_{8112}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{59}{156}\right)\)
\(\chi_{8112}(2971,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{19}{156}\right)\)
\(\chi_{8112}(3139,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{61}{156}\right)\)
\(\chi_{8112}(3187,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{29}{156}\right)\)
\(\chi_{8112}(3547,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{155}{156}\right)\)
\(\chi_{8112}(3595,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{103}{156}\right)\)
\(\chi_{8112}(3763,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{133}{156}\right)\)
\(\chi_{8112}(3811,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{89}{156}\right)\)
\(\chi_{8112}(4171,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{95}{156}\right)\)
\(\chi_{8112}(4219,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{31}{156}\right)\)
\(\chi_{8112}(4387,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{49}{156}\right)\)
\(\chi_{8112}(4435,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{149}{156}\right)\)
\(\chi_{8112}(4795,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{35}{156}\right)\)
\(\chi_{8112}(4843,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{115}{156}\right)\)
\(\chi_{8112}(5011,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{121}{156}\right)\)
\(\chi_{8112}(5059,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{53}{156}\right)\)
\(\chi_{8112}(5419,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{131}{156}\right)\)