Properties

Label 8112.dx
Modulus $8112$
Conductor $2704$
Order $52$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([0,13,0,42])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(181,8112)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8112\)
Conductor: \(2704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2704.cb
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{8112}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{23}{52}\right)\)
\(\chi_{8112}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{29}{52}\right)\)
\(\chi_{8112}(805,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{35}{52}\right)\)
\(\chi_{8112}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{41}{52}\right)\)
\(\chi_{8112}(1429,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{47}{52}\right)\)
\(\chi_{8112}(1741,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{1}{52}\right)\)
\(\chi_{8112}(2053,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{7}{52}\right)\)
\(\chi_{8112}(2677,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{19}{52}\right)\)
\(\chi_{8112}(2989,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{25}{52}\right)\)
\(\chi_{8112}(3301,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{31}{52}\right)\)
\(\chi_{8112}(3613,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{37}{52}\right)\)
\(\chi_{8112}(3925,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{43}{52}\right)\)
\(\chi_{8112}(4237,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{49}{52}\right)\)
\(\chi_{8112}(4549,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{3}{52}\right)\)
\(\chi_{8112}(4861,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{9}{52}\right)\)
\(\chi_{8112}(5173,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{15}{52}\right)\)
\(\chi_{8112}(5485,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{21}{52}\right)\)
\(\chi_{8112}(5797,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{27}{52}\right)\)
\(\chi_{8112}(6109,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{33}{52}\right)\)
\(\chi_{8112}(6733,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{45}{52}\right)\)
\(\chi_{8112}(7045,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{51}{52}\right)\)
\(\chi_{8112}(7357,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{5}{52}\right)\)
\(\chi_{8112}(7669,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(i\) \(-1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{11}{52}\right)\)
\(\chi_{8112}(7981,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(-i\) \(-1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{17}{52}\right)\)