sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(1680))
M = H._module
chi = DirichletCharacter(H, M([1512,735,440]))
pari:[g,chi] = znchar(Mod(589,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1680\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(28,\cdot)\)
\(\chi_{8041}(29,\cdot)\)
\(\chi_{8041}(46,\cdot)\)
\(\chi_{8041}(61,\cdot)\)
\(\chi_{8041}(62,\cdot)\)
\(\chi_{8041}(63,\cdot)\)
\(\chi_{8041}(73,\cdot)\)
\(\chi_{8041}(105,\cdot)\)
\(\chi_{8041}(112,\cdot)\)
\(\chi_{8041}(116,\cdot)\)
\(\chi_{8041}(184,\cdot)\)
\(\chi_{8041}(227,\cdot)\)
\(\chi_{8041}(233,\cdot)\)
\(\chi_{8041}(244,\cdot)\)
\(\chi_{8041}(248,\cdot)\)
\(\chi_{8041}(249,\cdot)\)
\(\chi_{8041}(261,\cdot)\)
\(\chi_{8041}(277,\cdot)\)
\(\chi_{8041}(292,\cdot)\)
\(\chi_{8041}(347,\cdot)\)
\(\chi_{8041}(413,\cdot)\)
\(\chi_{8041}(415,\cdot)\)
\(\chi_{8041}(420,\cdot)\)
\(\chi_{8041}(435,\cdot)\)
\(\chi_{8041}(448,\cdot)\)
\(\chi_{8041}(464,\cdot)\)
\(\chi_{8041}(503,\cdot)\)
\(\chi_{8041}(534,\cdot)\)
\(\chi_{8041}(585,\cdot)\)
\(\chi_{8041}(589,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{7}{16}\right),e\left(\frac{11}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(589, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{27}{280}\right)\) | \(e\left(\frac{1511}{1680}\right)\) | \(e\left(\frac{27}{140}\right)\) | \(e\left(\frac{563}{1680}\right)\) | \(e\left(\frac{239}{240}\right)\) | \(e\left(\frac{67}{240}\right)\) | \(e\left(\frac{81}{280}\right)\) | \(e\left(\frac{671}{840}\right)\) | \(e\left(\frac{145}{336}\right)\) | \(e\left(\frac{31}{336}\right)\) |
sage:chi.jacobi_sum(n)