# Properties

 Conductor 201 Order 66 Real no Primitive no Minimal yes Parity even Orbit label 804.ba

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(804)

sage: chi = H[653]

pari: [g,chi] = znchar(Mod(653,804))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 201 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 66 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = no Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 804.ba Orbit index = 27

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(403,269,337)$$ → $$(1,-1,e\left(\frac{31}{66}\right))$$

## Values

 -1 1 5 7 11 13 17 19 23 25 29 31 $$1$$ $$1$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{53}{66}\right)$$ $$e\left(\frac{7}{33}\right)$$ $$e\left(\frac{61}{66}\right)$$ $$e\left(\frac{37}{66}\right)$$ $$e\left(\frac{23}{33}\right)$$ $$e\left(\frac{43}{66}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{66}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{33})$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 804 }(653,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{804}(653,\cdot)) = \sum_{r\in \Z/804\Z} \chi_{804}(653,r) e\left(\frac{r}{402}\right) = -10.7050137186+26.256478844i$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 804 }(653,·),\chi_{ 804 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{804}(653,\cdot),\chi_{804}(1,\cdot)) = \sum_{r\in \Z/804\Z} \chi_{804}(653,r) \chi_{804}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 804 }(653,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{804}(653,·)) = \sum_{r \in \Z/804\Z} \chi_{804}(653,r) e\left(\frac{1 r + 2 r^{-1}}{804}\right) = 0.0$$