Properties

 Label 8034.2573 Modulus $8034$ Conductor $4017$ Order $102$ Real no Primitive no Minimal yes Parity even

Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(8034, base_ring=CyclotomicField(102))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([51,51,95]))

pari: [g,chi] = znchar(Mod(2573,8034))

Basic properties

 Modulus: $$8034$$ Conductor: $$4017$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$102$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{4017}(2573,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 8034.dd

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Values on generators

$$(5357,1237,5773)$$ → $$(-1,-1,e\left(\frac{95}{102}\right))$$

Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$ $$1$$ $$1$$ $$e\left(\frac{95}{102}\right)$$ $$e\left(\frac{23}{102}\right)$$ $$e\left(\frac{83}{102}\right)$$ $$e\left(\frac{71}{102}\right)$$ $$e\left(\frac{1}{102}\right)$$ $$e\left(\frac{29}{34}\right)$$ $$e\left(\frac{44}{51}\right)$$ $$e\left(\frac{61}{102}\right)$$ $$e\left(\frac{10}{17}\right)$$ $$e\left(\frac{8}{51}\right)$$
 value at e.g. 2

Related number fields

 Field of values: $\Q(\zeta_{51})$ Fixed field: Number field defined by a degree 102 polynomial (not computed)