Properties

Label 801.11
Modulus $801$
Conductor $801$
Order $66$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(801, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,63]))
 
pari: [g,chi] = znchar(Mod(11,801))
 

Basic properties

Modulus: \(801\)
Conductor: \(801\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 801.x

\(\chi_{801}(11,\cdot)\) \(\chi_{801}(50,\cdot)\) \(\chi_{801}(146,\cdot)\) \(\chi_{801}(176,\cdot)\) \(\chi_{801}(200,\cdot)\) \(\chi_{801}(203,\cdot)\) \(\chi_{801}(263,\cdot)\) \(\chi_{801}(311,\cdot)\) \(\chi_{801}(317,\cdot)\) \(\chi_{801}(437,\cdot)\) \(\chi_{801}(443,\cdot)\) \(\chi_{801}(470,\cdot)\) \(\chi_{801}(518,\cdot)\) \(\chi_{801}(545,\cdot)\) \(\chi_{801}(578,\cdot)\) \(\chi_{801}(680,\cdot)\) \(\chi_{801}(704,\cdot)\) \(\chi_{801}(734,\cdot)\) \(\chi_{801}(785,\cdot)\) \(\chi_{801}(797,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((713,181)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{21}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 801 }(11, a) \) \(-1\)\(1\)\(e\left(\frac{29}{66}\right)\)\(e\left(\frac{29}{33}\right)\)\(e\left(\frac{43}{66}\right)\)\(e\left(\frac{65}{66}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{23}{66}\right)\)\(e\left(\frac{19}{66}\right)\)\(e\left(\frac{14}{33}\right)\)\(e\left(\frac{25}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 801 }(11,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 801 }(11,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 801 }(11,·),\chi_{ 801 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 801 }(11,·)) \;\) at \(\; a,b = \) e.g. 1,2