Properties

Label 8004.ct
Modulus $8004$
Conductor $2668$
Order $44$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(44)) M = H._module chi = DirichletCharacter(H, M([22,0,12,33])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(307,8004)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8004\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(44\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2668.bj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(25\) \(31\) \(35\) \(37\)
\(\chi_{8004}(307,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{8004}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{13}{44}\right)\)
\(\chi_{8004}(679,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{8004}(1375,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{8004}(2395,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{8004}(2419,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{8004}(2743,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{8004}(3091,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{8004}(3439,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{8004}(3463,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{8004}(3811,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{8004}(4135,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{8004}(4855,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{8004}(5179,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{8004}(5551,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{8004}(6223,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{8004}(6571,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{8004}(7615,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{8004}(7639,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{8004}(7987,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{41}{44}\right)\)