sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8004, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,77,126,110]))
pari:[g,chi] = znchar(Mod(719,8004))
Modulus: | \(8004\) | |
Conductor: | \(8004\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8004}(239,\cdot)\)
\(\chi_{8004}(335,\cdot)\)
\(\chi_{8004}(371,\cdot)\)
\(\chi_{8004}(455,\cdot)\)
\(\chi_{8004}(587,\cdot)\)
\(\chi_{8004}(683,\cdot)\)
\(\chi_{8004}(719,\cdot)\)
\(\chi_{8004}(923,\cdot)\)
\(\chi_{8004}(1067,\cdot)\)
\(\chi_{8004}(1271,\cdot)\)
\(\chi_{8004}(1283,\cdot)\)
\(\chi_{8004}(1415,\cdot)\)
\(\chi_{8004}(1475,\cdot)\)
\(\chi_{8004}(1499,\cdot)\)
\(\chi_{8004}(1619,\cdot)\)
\(\chi_{8004}(1727,\cdot)\)
\(\chi_{8004}(1823,\cdot)\)
\(\chi_{8004}(1967,\cdot)\)
\(\chi_{8004}(2111,\cdot)\)
\(\chi_{8004}(2171,\cdot)\)
\(\chi_{8004}(2327,\cdot)\)
\(\chi_{8004}(2423,\cdot)\)
\(\chi_{8004}(2519,\cdot)\)
\(\chi_{8004}(2543,\cdot)\)
\(\chi_{8004}(2663,\cdot)\)
\(\chi_{8004}(2891,\cdot)\)
\(\chi_{8004}(3155,\cdot)\)
\(\chi_{8004}(3215,\cdot)\)
\(\chi_{8004}(3371,\cdot)\)
\(\chi_{8004}(3707,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4003,2669,3133,553)\) → \((-1,-1,e\left(\frac{9}{11}\right),e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(31\) | \(35\) | \(37\) |
\( \chi_{ 8004 }(719, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{154}\right)\) | \(e\left(\frac{95}{154}\right)\) | \(e\left(\frac{17}{77}\right)\) | \(e\left(\frac{24}{77}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{31}{154}\right)\) | \(e\left(\frac{5}{77}\right)\) | \(e\left(\frac{19}{154}\right)\) | \(e\left(\frac{50}{77}\right)\) | \(e\left(\frac{25}{77}\right)\) |
sage:chi.jacobi_sum(n)