Properties

Label 8004.719
Modulus $8004$
Conductor $8004$
Order $154$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([77,77,126,110]))
 
Copy content pari:[g,chi] = znchar(Mod(719,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(8004\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.cy

\(\chi_{8004}(239,\cdot)\) \(\chi_{8004}(335,\cdot)\) \(\chi_{8004}(371,\cdot)\) \(\chi_{8004}(455,\cdot)\) \(\chi_{8004}(587,\cdot)\) \(\chi_{8004}(683,\cdot)\) \(\chi_{8004}(719,\cdot)\) \(\chi_{8004}(923,\cdot)\) \(\chi_{8004}(1067,\cdot)\) \(\chi_{8004}(1271,\cdot)\) \(\chi_{8004}(1283,\cdot)\) \(\chi_{8004}(1415,\cdot)\) \(\chi_{8004}(1475,\cdot)\) \(\chi_{8004}(1499,\cdot)\) \(\chi_{8004}(1619,\cdot)\) \(\chi_{8004}(1727,\cdot)\) \(\chi_{8004}(1823,\cdot)\) \(\chi_{8004}(1967,\cdot)\) \(\chi_{8004}(2111,\cdot)\) \(\chi_{8004}(2171,\cdot)\) \(\chi_{8004}(2327,\cdot)\) \(\chi_{8004}(2423,\cdot)\) \(\chi_{8004}(2519,\cdot)\) \(\chi_{8004}(2543,\cdot)\) \(\chi_{8004}(2663,\cdot)\) \(\chi_{8004}(2891,\cdot)\) \(\chi_{8004}(3155,\cdot)\) \(\chi_{8004}(3215,\cdot)\) \(\chi_{8004}(3371,\cdot)\) \(\chi_{8004}(3707,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((-1,-1,e\left(\frac{9}{11}\right),e\left(\frac{5}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(719, a) \) \(1\)\(1\)\(e\left(\frac{5}{154}\right)\)\(e\left(\frac{95}{154}\right)\)\(e\left(\frac{17}{77}\right)\)\(e\left(\frac{24}{77}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{31}{154}\right)\)\(e\left(\frac{5}{77}\right)\)\(e\left(\frac{19}{154}\right)\)\(e\left(\frac{50}{77}\right)\)\(e\left(\frac{25}{77}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(719,a) \;\) at \(\;a = \) e.g. 2