Conductor 4001
Order 8
Real No
Primitive No
Parity Even
Orbit Label 8002.e

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(8002)
sage: chi = H[2915]
pari: [g,chi] = znchar(Mod(2915,8002))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 4001
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 8
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 8002.e
Orbit index = 5

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{8002}(2915,\cdot)\) \(\chi_{8002}(3931,\cdot)\) \(\chi_{8002}(4071,\cdot)\) \(\chi_{8002}(5087,\cdot)\)

Inducing primitive character


Values on generators

\(3\) → \(e\left(\frac{5}{8}\right)\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{8})\)